DOI QR코드

DOI QR Code

전방십자인대 재건술 시 이식건의 선택과 고정

Graft Selection and Fixation in Anterior Cruciate Ligament Reconstruction

  • 김두한 (계명대학교 의과대학 정형외과학교실) ;
  • 배기철 (계명대학교 의과대학 정형외과학교실) ;
  • 최병찬 (계명대학교 의과대학 정형외과학교실)
  • Kim, Du-Han (Department of Orthopedic Surgery, Keimyung University School of Medicine) ;
  • Bae, Ki-Cheor (Department of Orthopedic Surgery, Keimyung University School of Medicine) ;
  • Choi, Byung-Chan (Department of Orthopedic Surgery, Keimyung University School of Medicine)
  • 투고 : 2019.12.22
  • 심사 : 2020.02.04
  • 발행 : 2020.08.30

초록

전방십자인대 재건술은 수술의 시기, 수술 기법, 이식건의 선택 및 고정 방법, 재활 등 각각의 수술 과정을 성공적으로 수행해야하는 수술이다. 여러 과정들 중에서 이식건의 선택과 고정 방법은 아주 중요한 과정 중에 하나이지만 아직 술자들 간에 많은 논쟁의 여지가 있다. 이식건의 장단점에 관해 많은 연구들이 진행되고 있지만 여전히 이상적인 건에 대한 결론은 없다. 이와 유사하게 대퇴터널 및 경골터널 고정 방법에 대해서도 최근 많은 방법들이 개발되고 소개되고 있지만 그중에서 가장 좋은 방법을 찾지 못한 상태이다. 그래서 술자는 다양한 이식건과 고정 방법에 대하여 익숙해져야 하며 각각의 방법에 대한 장단점을 잘 알고 있어야 할 것이다. 따라서 본 종설은 전방십자인대 손상에서 이식건의 선택과 고정 방법에 대하여 지금까지 밝혀진 연구들을 분석하고 이에 관해 논의하고자 한다.

Anterior cruciate ligament (ACL) reconstruction is a successful procedure independently by patient selection, timing of surgery, surgical technique, choice of graft, and fixation methods. Among these factors, graft selection and fixation methods might be the most critical yet controversial questions for surgeons. Although recent studies showed that grafts have advantages and drawbacks, there is still no ideal graft. Similarly, many fixation methods of femoral and tibial tunnels have been proposed over the last few decades, with no clear superiority of one technique over another. Surgeons should be familiar with a variety of grafts, fixation techniques, and their specific associated surgical procedures as well as the advantages and disadvantages of each. Therefore, this article summarizes the current literature and discusses the current state of graft selection and fixation methods in the treatment of an ACL injury.

키워드

참고문헌

  1. Kaeding CC, Leger-St-Jean B, Magnussen RA. Epidemiology and diagnosis of anterior cruciate ligament injuries. Clin Sports Med. 2017;36:1-8. https://doi.org/10.1016/j.csm.2016.08.001
  2. Sanders TL, Pareek A, Kremers HM, et al. Long-term follow-up of isolated ACL tears treated without ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2017;25:493-500. https://doi.org/10.1007/s00167-016-4172-4
  3. Dabis J, Wilson A. Repair and augmentation with internal brace in the multiligament injured knee. Clin Sports Med. 2019;38:275-83. https://doi.org/10.1016/j.csm.2018.11.008
  4. van Eck CF, Limpisvasti O, ElAttrache NS. Is there a role for internal bracing and repair of the anterior cruciate ligament? a systematic literature review. Am J Sports Med. 2018;46:2291-8. https://doi.org/10.1177/0363546517717956
  5. Shaerf DA, Pastides PS, Sarraf KM, Willis-Owen CA. Anterior cruciate ligament reconstruction best practice: a review of graft choice. World J Orthop. 2014;5:23-9. https://doi.org/10.5312/wjo.v5.i1.23
  6. Vaishya R, Agarwal AK, Ingole S, Vijay V. Current trends in anterior cruciate ligament reconstruction: a review. Cureus. 2015;7:e378.
  7. Kaeding CC, Pedroza AD, Reinke EK, et al. Change in anterior cruciate ligament graft choice and outcomes over time. Arthroscopy. 2017;33:2007-14. https://doi.org/10.1016/j.arthro.2017.06.019
  8. Tibor L, Chan PH, Funahashi TT, Wyatt R, Maletis GB, Inacio MC. Surgical technique trends in primary ACL reconstruction from 2007 to 2014. J Bone Joint Surg Am. 2016;98:1079-89. https://doi.org/10.2106/JBJS.15.00881
  9. Delay BS, Smolinski RJ, Wind WM, Bowman DS. Current practices and opinions in ACL reconstruction and rehabilitation: results of a survey of the American Orthopaedic Society for Sports Medicine. Am J Knee Surg. 2001;14:85-91.
  10. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med. 1991;19:217-25. https://doi.org/10.1177/036354659101900303
  11. Hamner DL, Brown CH Jr, Steiner ME, Hecker AT, Hayes WC. Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am. 1999;81:549-57. https://doi.org/10.2106/00004623-199904000-00013
  12. Conte EJ, Hyatt AE, Gatt CJ Jr, Dhawan A. Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy. 2014;30:882-90. https://doi.org/10.1016/j.arthro.2014.03.028
  13. Choi JY, Ha JK, Kim YW, Shim JC, Yang SJ, Kim JG. Relationships among tendon regeneration on MRI, flexor strength, and functional performance after anterior cruciate ligament reconstruction with hamstring autograft. Am J Sports Med. 2012;40:152-62. https://doi.org/10.1177/0363546511424134
  14. Nakamura N, Horibe S, Sasaki S, et al. Evaluation of active knee flexion and hamstring strength after anterior cruciate ligament reconstruction using hamstring tendons. Arthroscopy. 2002;18:598-602. https://doi.org/10.1053/jars.2002.32868
  15. Ohkoshi Y, Inoue C, Yamane S, Hashimoto T, Ishida R. Changes in muscle strength properties caused by harvesting of autogenous semitendinosus tendon for reconstruction of contralateral anterior cruciate ligament. Arthroscopy. 1998;14:580-4. https://doi.org/10.1016/S0749-8063(98)70053-2
  16. Nakamae A, Deie M, Yasumoto M, et al. Three-dimensional computed tomography imaging evidence of regeneration of the semitendinosus tendon harvested for anterior cruciate ligament reconstruction: a comparison with hamstring muscle strength. J Comput Assist Tomogr. 2005;29:241-5. https://doi.org/10.1097/01.rct.0000153779.86663.92
  17. Ardern CL, Webster KE. Knee flexor strength recovery following hamstring tendon harvest for anterior cruciate ligament reconstruction: a systematic review. Orthop Rev (Pavia). 2009;1:e12.
  18. Yosmaoglu HB, Baltaci G, Ozer H, Atay A. Effects of additional gracilis tendon harvest on muscle torque, motor coordination, and knee laxity in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19:1287-92. https://doi.org/10.1007/s00167-011-1412-5
  19. Sharma A, Flanigan DC, Randall K, Magnussen RA. Does gracilis preservation matter in anterior cruciate ligament reconstruction? A systematic review. Arthroscopy. 2016;32:1165-73. https://doi.org/10.1016/j.arthro.2015.11.027
  20. Takeda Y, Kashiwaguchi S, Matsuura T, Higashida T, Minato A. Hamstring muscle function after tendon harvest for anterior cruciate ligament reconstruction: evaluation with T2 relaxation time of magnetic resonance imaging. Am J Sports Med. 2006;34:281-8. https://doi.org/10.1177/0363546505279574
  21. Tadokoro K, Matsui N, Yagi M, Kuroda R, Kurosaka M, Yoshiya S. Evaluation of hamstring strength and tendon regrowth after harvesting for anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32:1644-50. https://doi.org/10.1177/0363546504263152
  22. Nikolaou VS, Efstathopoulos N, Wredmark T. Hamstring tendons regeneration after ACL reconstruction: an overview. Knee Surg Sports Traumatol Arthrosc. 2007;15:153-60. https://doi.org/10.1007/s00167-006-0160-4
  23. Cross MJ, Roger G, Kujawa P, Anderson IF. Regeneration of the semitendinosus and gracilis tendons following their transection for repair of the anterior cruciate ligament. Am J Sports Med. 1992;20:221-3. https://doi.org/10.1177/036354659202000223
  24. Koga H, Zaffagnini S, Getgood AM, Muneta T. ACL graft selection: state of the art. J ISAKOS. 2018;3:177-84. https://doi.org/10.1136/jisakos-2017-000136
  25. Henry BM, Tomaszewski KA, Pekala PA, et al. Oblique incisions in hamstring tendon harvesting reduce iatrogenic injuries to the infrapatellar branch of the saphenous nerve. Knee Surg Sports Traumatol Arthrosc. 2018;26:1197-203.
  26. Webster KE, Feller JA, Hartnett N, Leigh WB, Richmond AK. Comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction: a 15-year follow-up of a randomized controlled trial. Am J Sports Med. 2016;44:83-90. https://doi.org/10.1177/0363546515611886
  27. Busam ML, Provencher MT, Bach BR Jr. Complications of anterior cruciate ligament reconstruction with bone-patellar tendon-bone constructs: care and prevention. Am J Sports Med. 2008;36:379-94. https://doi.org/10.1177/0363546507313498
  28. Xie X, Liu X, Chen Z, Yu Y, Peng S, Li Q. A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee. 2015;22:100-10. https://doi.org/10.1016/j.knee.2014.11.014
  29. Gifstad T, Foss OA, Engebretsen L, et al. Lower risk of revision with patellar tendon autografts compared with hamstring autografts: a registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med. 2014;42:2319-28. https://doi.org/10.1177/0363546514548164
  30. Persson A, Fjeldsgaard K, Gjertsen JE, et al. Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian Cruciate Ligament Registry, 2004-2012. Am J Sports Med. 2014;42:285-91. https://doi.org/10.1177/0363546513511419
  31. Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind M. Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: results from the danish registry of knee ligament reconstruction. Am J Sports Med. 2014;42:278-84. https://doi.org/10.1177/0363546513509220
  32. Hadjicostas PT, Soucacos PN, Paessler HH, Koleganova N, Berger I. Morphologic and histologic comparison between the patella and hamstring tendons grafts: a descriptive and anatomic study. Arthroscopy. 2007;23:751-6. https://doi.org/10.1016/j.arthro.2007.02.002
  33. Bansal A, Lamplot JD, VandenBerg J, Brophy RH. Meta-analysis of the risk of infections after anterior cruciate ligament reconstruction by graft type. Am J Sports Med. 2018;46:1500-8. https://doi.org/10.1177/0363546517714450
  34. Marumo K, Saito M, Yamagishi T, Fujii K. The "ligamentization" process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. Am J Sports Med. 2005;33:1166-73. https://doi.org/10.1177/0363546504271973
  35. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am. 1984;66:344-52. https://doi.org/10.2106/00004623-198466030-00005
  36. Hadjicostas PT, Soucacos PN, Berger I, Koleganova N, Paessler HH. Comparative analysis of the morphologic structure of quadriceps and patellar tendon: a descriptive laboratory study. Arthroscopy. 2007;23:744-50. https://doi.org/10.1016/j.arthro.2007.01.032
  37. Harris NL, Smith DA, Lamoreaux L, Purnell M. Central quadriceps tendon for anterior cruciate ligament reconstruction. Part I: morphometric and biomechanical evaluation. Am J Sports Med. 1997;25:23-8. https://doi.org/10.1177/036354659702500105
  38. Shani RH, Umpierez E, Nasert M, Hiza EA, Xerogeanes J. Biomechanical comparison of quadriceps and patellar tendon grafts in anterior cruciate ligament reconstruction. Arthroscopy. 2016;32:71-5. https://doi.org/10.1016/j.arthro.2015.06.051
  39. Slone HS, Romine SE, Premkumar A, Xerogeanes JW. Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results. Arthroscopy. 2015;31:541-54. https://doi.org/10.1016/j.arthro.2014.11.010
  40. Lee JK, Lee S, Lee MC. Outcomes of anatomic anterior cruciate ligament reconstruction: bone-quadriceps tendon graft versus double-bundle hamstring tendon graft. Am J Sports Med. 2016;44:2323-9. https://doi.org/10.1177/0363546516650666
  41. Cavaignac E, Coulin B, Tscholl P, Nik Mohd Fatmy N, Duthon V, Menetrey J. Is quadriceps tendon autograft a better choice than hamstring autograft for anterior cruciate ligament reconstruction? A comparative study with a mean follow-up of 3.6 years. Am J Sports Med. 2017;45:1326-32. https://doi.org/10.1177/0363546516688665
  42. Kwak YH, Lee S, Lee MC, Han HS. Anterior cruciate ligament reconstruction with quadriceps tendon-patellar bone allograft: matched case control study. BMC Musculoskelet Disord. 2018;19:45. https://doi.org/10.1186/s12891-018-1959-0
  43. Pallis M, Svoboda SJ, Cameron KL, Owens BD. Survival comparison of allograft and autograft anterior cruciate ligament reconstruction at the United States Military Academy. Am J Sports Med. 2012;40:1242-6. https://doi.org/10.1177/0363546512443945
  44. Wasserstein D, Sheth U, Cabrera A, Spindler KP. A systematic review of failed anterior cruciate ligament reconstruction with autograft compared with allograft in young patients. Sports Health. 2015;7:207-16. https://doi.org/10.1177/1941738115579030
  45. Jackson DW, Grood ES, Goldstein JD, et al. A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med. 1993;21:176-85. https://doi.org/10.1177/036354659302100203
  46. Bottoni CR, Smith EL, Shaha J, et al. Autograft versus allograft anterior cruciate ligament reconstruction: a prospective, randomized clinical study with a minimum 10-year follow-up. Am J Sports Med. 2015;43:2501-9. https://doi.org/10.1177/0363546515596406
  47. Kraeutler MJ, Bravman JT, McCarty EC. Bone-patellar tendon-bone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: a meta-analysis of 5182 patients. Am J Sports Med. 2013;41:2439-48. https://doi.org/10.1177/0363546513484127
  48. Lubowitz JH, Schwartzberg R, Smith P. Cortical suspensory button versus aperture interference screw fixation for knee anterior cruciate ligament soft-tissue allograft: a prospective, randomized controlled trial. Arthroscopy. 2015;31:1733-9. https://doi.org/10.1016/j.arthro.2015.03.006
  49. Hu B, Shen W, Zhou C, Meng J, Wu H, Yan S. Cross pin versus interference screw for femoral graft fixation in hamstring anterior cruciate ligament reconstruction: a systematic review and meta-analysis of clinical outcomes. Arthroscopy. 2018;34:615-23. https://doi.org/10.1016/j.arthro.2017.07.031
  50. Suchenski M, McCarthy MB, Chowaniec D, et al. Material properties and composition of soft-tissue fixation. Arthroscopy. 2010;26:821-31. https://doi.org/10.1016/j.arthro.2009.12.026
  51. Wang JH, Lee ES, Lee BH. Paradoxical tunnel enlargement after ACL reconstruction with hamstring autografts when using b-TCP containing interference screws for tibial aperture fixation- prospectively comparative study. BMC Musculoskelet Disord. 2017;18:398. https://doi.org/10.1186/s12891-017-1757-0
  52. Ozbaydar M, Elhassan B, Warner JJ. The use of anchors in shoulder surgery: a shift from metallic to bioabsorbable anchors. Arthroscopy. 2007;23:1124-6. https://doi.org/10.1016/j.arthro.2007.05.011
  53. Barber FA. Complications of biodegradable materials: anchors and interference screws. Sports Med Arthrosc Rev. 2015;23:149-55. https://doi.org/10.1097/JSA.0000000000000076
  54. Ramsingh V, Prasad N, Lewis M. Pre-tibial reaction to biointerference screw in anterior cruciate ligament reconstruction. Knee. 2014;21:91-4. https://doi.org/10.1016/j.knee.2013.07.011
  55. Lee DW, Lee JW, Kim SB, et al. Comparison of poly-L-lactic acid and poly-L-lactic acid/hydroxyapatite bioabsorbable screws for tibial fixation in ACL reconstruction: clinical and magnetic resonance imaging results. Clin Orthop Surg. 2017;9:270-9. https://doi.org/10.4055/cios.2017.9.3.270
  56. Barber FA, Spenciner DB, Bhattacharyya S, Miller LE. Biocomposite implants composed of poly(lactide-co-glycolide)/b-tricalcium phosphate: systematic review of imaging, complication, and performance outcomes. Arthroscopy. 2017;33:683-9. https://doi.org/10.1016/j.arthro.2016.09.032
  57. Ng VY. Risk of disease transmission with bone allograft. Orthopedics. 2012;35:679-81. https://doi.org/10.3928/01477447-20120725-04
  58. Lubowitz JH, Poehling GG. Watch your footprint: anatomic ACL reconstruction. Arthroscopy. 2009;25:1059-60. https://doi.org/10.1016/j.arthro.2009.08.001
  59. Elliott MJ, Kurtz CA. Peripheral versus aperture fixation for anterior cruciate ligament reconstruction. Clin Sports Med. 2007;26:683-93. https://doi.org/10.1016/j.csm.2007.06.002
  60. Morgan CD, Kalmam VR, Grawl DM. Isometry testing for anterior cruciate ligament reconstruction revisited. Arthroscopy. 1995;11:647-59. https://doi.org/10.1016/0749-8063(95)90104-3
  61. Onggo JR, Nambiar M, Pai V. Fixed- versus adjustable-loop devices for femoral fixation in anterior cruciate ligament reconstruction: a systematic review. Arthroscopy. 2019;35:2484-98. https://doi.org/10.1016/j.arthro.2019.02.029
  62. Colvin A, Sharma C, Parides M, Glashow J. What is the best femoral fixation of hamstring autografts in anterior cruciate ligament reconstruction?: a meta-analysis. Clin Orthop Relat Res. 2011;469:1075-81. https://doi.org/10.1007/s11999-010-1662-4
  63. Brand J Jr, Weiler A, Caborn DN, Brown CH Jr, Johnson DL. Graft fixation in cruciate ligament reconstruction. Am J Sports Med. 2000;28:761-74. https://doi.org/10.1177/03635465000280052501
  64. Buelow JU, Siebold R, Ellermann A. A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: extracortical versus anatomical fixation. Knee Surg Sports Traumatol Arthrosc. 2002;10:80-5. https://doi.org/10.1007/s00167-001-0267-6
  65. Fauno P, Kaalund S. Tunnel widening after hamstring anterior cruciate ligament reconstruction is influenced by the type of graft fixation used: a prospective randomized study. Arthroscopy. 2005;21:1337-41. https://doi.org/10.1016/j.arthro.2005.08.023
  66. Wilson AJ, Yasen SK, Nancoo T, Stannard R, Smith JO, Logan JS. Anatomic all-inside anterior cruciate ligament reconstruction using the translateral technique. Arthrosc Tech. 2013;2:e99-104. https://doi.org/10.1016/j.eats.2012.12.002
  67. Qi W, Liu Y, Xue J, Li H, Wang J, Qu F. Applying cross-pin system in both femoral and tibial fixation in anterior cruciate ligament reconstruction using hamstring tendons. Arthrosc Tech. 2015;4:e397-402. https://doi.org/10.1016/j.eats.2015.03.018
  68. Zantop T, Weimann A, Rummler M, Hassenpflug J, Petersen W. Initial fixation strength of two bioabsorbable pins for the fixation of hamstring grafts compared to interference screw fixation: single cycle and cyclic loading. Am J Sports Med. 2004;32:641-9. https://doi.org/10.1177/0095399703258616
  69. Choi NH, Lee JH, Victoroff BN. Do broken cross-pins compromise stability after anterior cruciate ligament reconstructions with hamstring tendons? Arthroscopy. 2007;23:1334-40.e2. https://doi.org/10.1016/j.arthro.2007.07.007
  70. Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C. Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy. 2006;22:660-8. https://doi.org/10.1016/j.arthro.2006.04.082
  71. Harilainen A, Sandelin J, Jansson KA. Cross-pin femoral fixation versus metal interference screw fixation in anterior cruciate ligament reconstruction with hamstring tendons: results of a controlled prospective randomized study with 2-year follow-up. Arthroscopy. 2005;21:25-33. https://doi.org/10.1016/j.arthro.2004.09.013
  72. Choi NH, Yoo SY, Victoroff BN. Tibial tunnel widening after hamstring anterior cruciate ligament reconstructions: comparison between Rigidfix and Bio-TransFix. Knee. 2013;20:31-5. https://doi.org/10.1016/j.knee.2012.05.009
  73. Persson A, Gifstad T, Lind M, et al. Graft fixation influences revision risk after ACL reconstruction with hamstring tendon autografts. Acta Orthop. 2018;89:204-10. https://doi.org/10.1080/17453674.2017.1406243
  74. Eysturoy NH, Nissen KA, Nielsen T, Lind M. The influence of graft fixation methods on revision rates after primary anterior cruciate ligament reconstruction. Am J Sports Med. 2018;46:524-30. https://doi.org/10.1177/0363546517748924
  75. Kohn D, Rose C. Primary stability of interference screw fixation. Influence of screw diameter and insertion torque. Am J Sports Med. 1994;22:334-8. https://doi.org/10.1177/036354659402200307
  76. Hill PF, Russell VJ, Salmon LJ, Pinczewski LA. The influence of supplementary tibial fixation on laxity measurements after anterior cruciate ligament reconstruction with hamstring tendons in female patients. Am J Sports Med. 2005;33:94-101. https://doi.org/10.1177/0363546504268036
  77. Weiss FP, Possoli FAA, Costa IZ, Borges PC, Stieven Filho E, Kubrusly LF. Fixation of the anterior ligament graft at the tibial pole: biomechanical analysis of three methods. Rev Bras Ortop (Sao Paulo). 2019;54:697-702. https://doi.org/10.1055/s-0039-1697015
  78. Goldblatt JP, Fitzsimmons SE, Balk E, Richmond JC. Reconstruction of the anterior cruciate ligament: meta-analysis of patellar tendon versus hamstring tendon autograft. Arthroscopy. 2005;21:791-803. https://doi.org/10.1016/j.arthro.2005.04.107
  79. Teo WW, Yeoh CS, Wee TH. Tibial fixation in anterior cruciate ligament reconstruction. J Orthop Surg (Hong Kong). 2017;25:2309499017699743.