DOI QR코드

DOI QR Code

Alternative Methods for Testing Botulinum Toxin: Current Status and Future Perspectives

  • Received : 2019.11.29
  • Accepted : 2020.02.17
  • Published : 2020.07.01

Abstract

Botulinum toxins are neurotoxic modular proteins composed of a heavy chain and a light chain connected by a disulfide bond and are produced by Clostridium botulinum. Although lethally toxic, botulinum toxin in low doses is clinically effective in numerous medical conditions, including muscle spasticity, strabismus, hyperactive urinary bladder, excessive sweating, and migraine. Globally, several companies are now producing products containing botulinum toxin for medical and cosmetic purposes, including the reduction of facial wrinkles. To test the efficacy and toxicity of botulinum toxin, animal tests have been solely and widely used, resulting in the inevitable sacrifice of hundreds of animals. Hence, alternative methods are urgently required to replace animals in botulinum toxin testing. Here, the various alternative methods developed to test the toxicity and efficacy of botulinum toxins have been briefly reviewed and future perspectives have been detailed.

Keywords

References

  1. Alshadwi, A., Nadershah, M. and Osborn, T. (2015) Therapeutic applications of botulinum neurotoxins in head and neck disorders. Saudi Dent. J. 27, 3-11. https://doi.org/10.1016/j.sdentj.2014.10.001
  2. Benedetto, A. V. (1999) The cosmetic uses of botulinum toxin type A. Int. J. Dermatol. 38, 641-655. https://doi.org/10.1046/j.1365-4362.1999.00722.x
  3. Bigalke, H. and Rummel, A. (2015) Botulinum neurotoxins: qualitative and quantitative analysis using the mouse phrenic nerve hemidiaphragm assay (MPN). Toxins 7, 4895-4905. https://doi.org/10.3390/toxins7124855
  4. Bjornstad, K., Aberg, A. T., Kalb, S. R., Wang, D., Barr, J. R., Bondesson, U. and Hedeland, M. (2014) Validation of the Endopep-MS method for qualitative detection of active botulinum neurotoxins in Biomol Ther 28(4), 302-310 (2020) human and chicken serum. Anal. Bioanal. Chem. 406, 7149-7161. https://doi.org/10.1007/s00216-014-8170-4
  5. Boyer, A. E., Moura, H., Woolfitt, A. R., Kalb, S. R., McWilliams, L. G., Pavlopoulos, A., Schmidt, J. G., Ashley, D. L. and Barr, J. R. (2005) From the mouse to the mass spectrometer: detection and differentiation of the endoproteinase activities of botulinum neurotoxins A-G by mass spectrometry. Anal. Chem. 77, 3916-3924. https://doi.org/10.1021/ac050485f
  6. Bulbring, E. (1946) Observations on the isolated phrenic nerve diaphragm preparation of the rat. Br. J. Pharmacol. Chemother. 1, 38-61. https://doi.org/10.1111/j.1476-5381.1946.tb00025.x
  7. Bushara, K. O., Park, D. M., Jones, J. C. and Schutta, H. S. (1996) Botulinum toxin-a possible new treatment for axillary hyperhidrosis. Clin. Exp. Dermatol. 21, 276-278. https://doi.org/10.1111/j.1365-2230.1996.tb00093.x
  8. Cai, S., Singh, B. R. and Sharma, S. (2007) Botulism diagnostics: from clinical symptoms to in vitro assays. Crit. Rev. Microbiol. 33, 109-125. https://doi.org/10.1080/10408410701364562
  9. Capek, P. and Dickerson, T. (2010) Sensing the deadliest toxin: technologies for botulinum neurotoxin detection. Toxins 2, 24-53. https://doi.org/10.3390/toxins2010024
  10. Carruthers, J. D. and Carruthers, A. (2002) Cosmetic use of botulinum toxin for treatment of downturned mouth. United States patent US6358917B1.
  11. Cheng, L. W., Land, K. M. and Stanker, L. H. (2012) Current methods for detecting the presence of botulinum neurotoxins in food and other biological samples. In: Bioterrorism (S. A. Morse, Ed.), pp. 1-18. IntechOpen, London.
  12. Cheng, L. W. and Stanker, L. H. (2013) Detection of botulinum neurotoxin serotypes A and B using a chemiluminescent versus electrochemiluminescent immunoassay in food and serum. J. Agric. Food Chem. 61, 755-760. https://doi.org/10.1021/jf3041963
  13. Cheng, W., Land, M., Tam, C., Brandon, D. L., Stanker, H. (2016) Technologies for detecting botulinum neurotoxins in biological and environmental matrices. In Significance, Prevention and Control of Food Related Diseases (H. Makun, Ed.), pp. 125-144. InTech, London.
  14. Collins, A. and Nasir, A. (2010) Topical botulinum toxin. J. Clin. Aesthet. Dermatol. 3, 35-39.
  15. Cox, L. and Cameron, A. P. (2014) OnabotulinumtoxinA for the treatment of overactive bladder. Res. Rep. Urol. 6, 79-89.
  16. Dressler, D., Dirnberger, G., Bhatia, K. P., Irmer, A., Quinn, N. P., Bigalke, H. and Marsden, C. D. (2000) Botulinum toxin antibody testing: comparison between the mouse protection assay and the mouse lethality assay. Mov. Disord. 15, 973-976. https://doi.org/10.1002/1531-8257(200009)15:5<973::AID-MDS1031>3.0.CO;2-X
  17. Dressler, D., Saberi, F. A. and Barbosa, E. R. (2005) Botulinum toxin: mechanisms of action. Arq. Neuropsiquiatr. 63, 180-185. https://doi.org/10.1590/S0004-282X2005000100035
  18. Dunning, F. M., Piazza, T. M., Zeytin, F. N. and Tucker, W. C. (2014) Isolation and quantification of botulinum neurotoxin from complex matrices using the BoTest matrix assays. J. Vis. Exp. 3, e51170.
  19. Duthie, J. B., Vincent, M., Herbison, G. P., Wilson, D. I. and Wilson, D. (2011) Botulinum toxin injections for adults with overactive bladder syndrome. Cochrane Database Syst. Rev. 7, CD005493.
  20. Ekong, T. A., Feavers, I. M. and Sesardic, D. (1997) Recombinant SNAP-25 is an effective substrate for Clostridium botulinum type A toxin endopeptidase activity in vitro. Microbiology 143, 3337-3347. https://doi.org/10.1099/00221287-143-10-3337
  21. Escher, C. M., Paracka, L., Dressler, D. and Kollewe, K. (2017) Botulinum toxin in the management of chronic migraine: clinical evidence and experience. Ther. Adv. Neurol. Disord. 10, 127-135. https://doi.org/10.1177/1756285616677005
  22. Fach, P., Micheau, P., Mazuet, C., Perelle, S. and Popoff, M. (2009) Development of real-time PCR tests for detecting botulinum neurotoxins A, B, E, F producing Clostridium botulinum, Clostridium baratii and Clostridium butyricum. J. Appl. Microbiol. 107, 465-473. https://doi.org/10.1111/j.1365-2672.2009.04215.x
  23. Food and Drug Administration (2017) Laboratory methods: bacteriological analytical manual (BAM). Available from: https://www.fda.gov/food/laboratory-methods-food/bam-clostridium-botulinum/.
  24. Fernandez-Salas, E., Wang, J., Molina, Y., Nelson, J. B., Jacky, B. P. and Aoki, K. R. (2012) Botulinum neurotoxin serotype A specific cell-based potency assay to replace the mouse bioassay. PLoS ONE 7, e49516. https://doi.org/10.1371/journal.pone.0049516
  25. Ferreira, J. L. (2001) Comparison of amplified ELISA and mouse bioassay procedures for determination of botulinal toxins A, B, E, and F. J. AOAC Int. 84, 85-88. https://doi.org/10.1093/jaoac/84.1.85
  26. Forster, R. J., Bertoncello, P. and Keyes, T. E. (2009) Electrogenerated chemiluminescence. Annu. Rev. Anal. Chem. 2, 359-385. https://doi.org/10.1146/annurev-anchem-060908-155305
  27. Heckmann, M., Ceballos-Baumann, A. O. and Plewig, G. (2001) Botulinum toxin A for axillary hyperhidrosis (excessive sweating). N. Engl. J. Med. 344, 488-493. https://doi.org/10.1056/NEJM200102153440704
  28. Hodowanec, A. and Bleck, T. P. (2015) Botulism (Clostridium botulinum). In Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases (8th ed.) (J. E. Bennett, R. Dolin and M. J. Blaser, Eds.), pp. 2763-2767.e2. Elsevier, Philadelphia.
  29. Kalb, S., Baudys, J., Wang, D. and Barr, J. (2015) Recommended mass spectrometry-based strategies to identify botulinum neurotoxin- containing samples. Toxins 7, 1765-1778. https://doi.org/10.3390/toxins7051765
  30. Kang, M., Han, A., Kim, D. E., Seidle, T., Lim, K. M. and Bae, S. (2018) Mental stress from animal experiments: a survey with Korean researchers. Toxicol. Res. 34, 75-81. https://doi.org/10.5487/TR.2018.34.1.075
  31. Keller, J. E. and Neale, E. A. (2001) The role of the synaptic protein snap-25 in the potency of botulinum neurotoxin type A. J. Biol. Chem. 276, 13476-13482. https://doi.org/10.1074/jbc.M010992200
  32. Kerner, J. (1817) Vergiftung durch verdorbene Würste. Tubinger Blatt Naturwissenschaften Arzneykunde 3, 1-25.
  33. Kiris, E., Nuss, J. E., Burnett, J. C., Kota, K. P., Koh, D. C., Wanner, L. M., Torres-Melendez, E., Gussio, R., Tessarollo, L. and Bavari, S. (2011) Embryonic stem cell-derived motoneurons provide a highly sensitive cell culture model for botulinum neurotoxin studies, with implications for high-throughput drug discovery. Stem Cell Res. 6, 195-205. https://doi.org/10.1016/j.scr.2011.01.002
  34. Lentz, J. and Weingrow, D. (2018) Bulbar muscle weakness in the setting of therapeutic botulinum injections. Clin. Pract. Cases Emerg. Med. 2, 330-333. https://doi.org/10.5811/cpcem.2018.8.39178
  35. Lindstrom, M. and Korkeala, H. (2006) Laboratory diagnostics of botulism. Clin. Microbiol. Rev. 19, 298-314. https://doi.org/10.1128/CMR.19.2.298-314.2006
  36. Lindstrom, M., Keto, R., Markkula, A., Nevas, M., Hielm, S. and Korkeala, H. (2001) Multiplex PCR assay for detection and identification of Clostridium botulinum types A, B, E, and F in food and fecal material. Appl. Environ. Microbiol. 67, 5694-5699. https://doi.org/10.1128/AEM.67.12.5694-5699.2001
  37. Maslanka, S. E., Luquez, C., Raphael, B. H., Dykes, J. K. and Joseph, L. A. (2011) Utility of botulinum toxin ELISA A, B, E, F kits for clinical laboratory investigations of human botulism. Botulinum J. 2, 72-92. https://doi.org/10.1504/TBJ.2011.041817
  38. McNutt, P., Beske, P. and Thirunavukkarsu, N. (2013) Cell-based assays for neurotoxin studies. In Biological Toxins and Bioterrorism (P. Gopalakrishnakone, M. Balali-Mood, L. Llewellyn and B. R. Singh, Eds.), pp. 247-271. Springer.
  39. de Medici, D., Anniballi, F., Wyatt, G. M., Lindstrom, M., Messelhäusser, U., Aldus, C. F., Delibato, E., Korkeala, H., Peck, M. W. and Fenicia, L. (2009) Multiplex PCR for detection of botulinum neurotoxinproducing clostridia in clinical, food, and environmental samples. Appl. Environ. Microbiol. 75, 6457-6461. https://doi.org/10.1128/AEM.00805-09
  40. Nawrocki, E. M., Bradshaw, M. and Johnson, E. A. (2018) Botulinum neurotoxin-encoding plasmids can be conjugatively transferred to diverse clostridial strains. Sci. Rep. 8, 3100. https://doi.org/10.1038/s41598-018-21342-9
  41. Nigam, P. K. and Nigam, A. (2010) Botulinum toxin. Indian J. Dermatol. 55, 8-14. https://doi.org/10.4103/0019-5154.60343
  42. Nuss, J. E., Ruthel, G., Tressler, L. E., Wanner, L. M., Torres-Melendez, E., Hale, M. L. and Bavari, S. (2010) Development of cell-based assays to measure botulinum neurotoxin serotype A activity using cleavage-sensitive antibodies. J. Biomol. Screen. 15, 42-51. https://doi.org/10.1177/1087057109354779
  43. Parks, B. A., Shearer, J. D., Baudys, J., Kalb, S. R., Sanford, D. C., Pirkle, J. L. and Barr, J. R. (2011) Quantification of botulinum neurotoxin serotypes A and B from serum using mass spectrometry. Anal. Chem. 83, 9047-9053. https://doi.org/10.1021/ac201910q
  44. Peck, M. (2006) Clostridiumbotulinum and the safety of minimally heated, chilled foods: an emerging issue? J. Appl. Microbiol. 101, 556-570. https://doi.org/10.1111/j.1365-2672.2006.02987.x
  45. Pellett, S. (2013) Progress in cell based assays for botulinum neurotoxin detection. Curr. Top. Microbiol. Immunol. 364, 257-285.
  46. Pirazzini, M., Rossetto, O., Eleopra, R. and Montecucco, C. (2017) Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol. Rev. 69, 200-235. https://doi.org/10.1124/pr.116.012658
  47. Raphael, B. H. (2012) Exploring genomic diversity in Clostridium botulinum using DNA microarrays. Botulinum J. 2, 99-108. https://doi.org/10.1504/TBJ.2012.050195
  48. Rasetti-Escargueil, C., Liu, Y., Rigsby, P., Jones, R. G. A. and Sesardic, D. (2011) Phrenic nerve-hemidiaphragm as a highly sensitive replacement assay for determination of functional botulinum toxin antibodies. Toxicon 57, 1008-1016. https://doi.org/10.1016/j.toxicon.2011.04.003
  49. Rasooly, R. and Do, P. M. (2008) Development of an in vitro activity assay as an alternative to the mouse bioassay for Clostridium botulinum neurotoxin type A. Appl. Environ. Microbiol. 74, 4309-4313. https://doi.org/10.1128/AEM.00617-08
  50. Rheaume, C., Cai, B., Wang, J., Fernandez-Salas, E., Aoki, K., Francis, J. and Broide, R. (2015) A highly specific monoclonal antibody for botulinum neurotoxin type A-cleaved SNAP25. Toxins 7, 2354-2370. https://doi.org/10.3390/toxins7072354
  51. Rosen, O., Feldberg, L., Yamin, T. S., Dor, E., Barnea, A., Weissberg, A. and Zichel, R. (2017) Development of a multiplex Endopep-MS assay for simultaneous detection of botulinum toxins A, B and E. Sci. Rep. 7, 14859. https://doi.org/10.1038/s41598-017-14911-x
  52. Rosen, O., Feldberg, L., Gura, S. and Zichel, R. (2015) A new peptide substrate for enhanced botulinum neurotoxin type B detection by endopeptidase-liquid chromatography-tandem mass spectrometry/multiple reaction monitoring assay. Anal. Biochem. 473, 7-10. https://doi.org/10.1016/j.ab.2014.09.016
  53. Rust, A., Doran, C., Hart, R., Binz, T., Stickings, P., Sesardic, D., Peden, A. A. and Davletov, B. (2017) A cell line for detection of botulinum neurotoxin type B. Front. Pharmacol. 8, 796. https://doi.org/10.3389/fphar.2017.00796
  54. Sesardic, D. and Das, R. G. (2007) Alternatives to the LD50 assay for botulinum toxin potency testing: strategies and progress towards refinement, reduction and replacement. In Proceeding of 6th World Congress on Alternatives and Animal Use in the Life Sciences, pp. 21-25. Tokyo, Japan.
  55. Sesardic, D., McLellan, K., Ekong, T. A. and Das, R. G. (1996) Refinement and validation of an alternative bioassay for potency testing of therapeutic botulinum type A toxin. Pharmacol. Toxicol. 78, 283-288. https://doi.org/10.1111/j.1600-0773.1996.tb01376.x
  56. Sharma, S. K., Ferreira, J. L., Eblen, B. S. and Whiting, R. C. (2006) Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl. Environ.Microbiol. 72, 1231-1238. https://doi.org/10.1128/AEM.72.2.1231-1238.2006
  57. Silberstein, S., Mathew, N., Saper, J. and Jenkins, S. (2000) Botulinum toxin type A as a migraine preventive treatment. Headache 40, 445-450. https://doi.org/10.1046/j.1526-4610.2000.00066.x
  58. Simon, S., Fiebig, U., Liu, Y., Tierney, R., Dano, J., Worbs, S., Endermann, T., Nevers, M. C., Volland, H. and Sesardic, D. (2015) Recommended immunological strategies to screen for botulinum neurotoxin-containing samples. Toxins 7, 5011-5034. https://doi.org/10.3390/toxins7124860
  59. Small, R. (2014) Botulinum toxin injection for facial wrinkles. Am. Fam. Physician 90, 168-175.
  60. Smith, T. J., Hill, K. K. and Raphael, B. H. (2015) Historical and current perspectives on Clostridium botulinum diversity. Front. Microbiol. 166, 290-302.
  61. Snow, B. J., Tsui, J. K., Bhatt, M. H., Varelas, M., Hashimoto, S. A. and Calne, D. B. (1990) Treatment of spasticity with botulinum toxin: a double-blind study. Ann. Neurol. 28, 512-515. https://doi.org/10.1002/ana.410280407
  62. Stephens, M. L. (2005) Nomination of alternative methods to replace the mouse LD50 assay for botulinum toxin potency testing. Test method nomination to the ICCVAM. New York, USA.
  63. Szabo, E. A., Pemberton, J. M. and Desmarchelier, P. M. (1993) Detection of the genes encoding botulinum neurotoxin types A to E by the polymerase chain reaction. Appl. Environ. Microbiol. 59, 3011-3020. https://doi.org/10.1128/aem.59.9.3011-3020.1993
  64. Taylor, K., Gericke, C. and Alvarez, L. R. (2019) Botulinum toxin testing on animals is still a Europe-wide issue. ALTEX 36, 81-90. https://doi.org/10.14573/altex.1807101
  65. Thirunavukkarasu, N., Johnson, E., Pillai, S., Hodge, D., Stanker, L., Wentz, T., Singh, B., Venkateswaran, K., McNutt, P., Adler, M., Brown, E., Hammack, T., Burr, D. and Sharma, S. (2018) Botulinum neurotoxin detection methods for public health response and surveillance. Front. Bioeng. Biotechnol. 6, 80. https://doi.org/10.3389/fbioe.2018.00080
  66. Tornqvist, E., Annas, A., Granath, B., Jalkesten, E., Cotgreave, I. and Oberg, M. (2014) Strategic focus on 3R principles reveals major reductions in the use of animals in pharmaceutical toxicity testing. PLoS ONE 9, e101638. https://doi.org/10.1371/journal.pone.0101638
  67. Valenti, G., Fiorani, A., Li, H., Sojic, N. and Paolucci, F. (2016) Essential role of electrode materials in electrochemiluminescence applications. ChemElectroChem 3, 1990-1997. https://doi.org/10.1002/celc.201600602
  68. von Berg, L., Stern, D., Pauly, D., Mahrhold, S., Weisemann, J., Jentsch, L., Hansbauer, E. M., Müller, C., Avondet, M. A., Rummel, A., Dorner, M. B. and Dorner, B. G. (2019) Functional detection of botulinum neurotoxin serotypes A to F by monoclonal neoepitopespecific antibodies and suspension array technology. Sci. Rep. 9, 5531. https://doi.org/10.1038/s41598-019-41722-z
  69. Wictome, M., Newton, K., Jameson, K., Hallis, B., Dunnigan, P., Mackay, E., Clarke, S., Taylor, R., Gaze, J. and Foster, K. (1999) Development of an in vitro bioassay for Clostridium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay. Appl. Environ. Microbiol. 65, 3787-3792. https://doi.org/10.1128/aem.65.9.3787-3792.1999
  70. Wilder-Kofie, T. D., Luquez, C., Adler, M., Dykes, J. K., Coleman, J. D. and Maslanka, S. E. (2011) An alternative in vivo method to refine the mouse bioassay for botulinum toxin detection. Comp. Med. 61, 235-242.
  71. Yadirgi, G., Stickings, P., Rajagopal, S., Liu, Y. and Sesardic, D. (2017) Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency. J. Immunol. Methods 451, 90-99. https://doi.org/10.1016/j.jim.2017.09.007
  72. Zhang, Y., Lou, J., Jenko, K. L., Marks, J. D. and Varnum, S. M. (2012) Simultaneous and sensitive detection of six serotypes of botulinum neurotoxin using enzyme-linked immunosorbent assay-based protein antibody microarrays. Anal. Biochem. 430, 185-192. https://doi.org/10.1016/j.ab.2012.08.021
  73. Zechmeister, T. C., Farnleitner, A. H., Rocke, T. E., Pittner, F., Rosengarten, R., Mach, R. L., Herzig, A. and Kirschner, A. K. (2002) PCR and ELISA: in vitro alternatives to the mouse-bioassay for assessing the botulinum-neurotoxin-C1 production potential in environmental samples? ALTEX 19 Suppl 1, 49-54.

Cited by

  1. Toxemia in Human Naturally Acquired Botulism vol.12, pp.11, 2020, https://doi.org/10.3390/toxins12110716
  2. Botulinum toxins in cosmetology: clarifications vol.20, pp.4, 2020, https://doi.org/10.17116/klinderma202120041135
  3. Rapid Detection of Clostridium botulinum in Food Using Loop-Mediated Isothermal Amplification (LAMP) vol.18, pp.9, 2021, https://doi.org/10.3390/ijerph18094401
  4. Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics vol.22, pp.14, 2020, https://doi.org/10.3390/ijms22147524
  5. Human-Relevant Sensitivity of iPSC-Derived Human Motor Neurons to BoNT/A1 and B1 vol.13, pp.8, 2021, https://doi.org/10.3390/toxins13080585
  6. Optogenetically controlled human functional motor endplate for testing botulinum neurotoxins vol.12, pp.1, 2020, https://doi.org/10.1186/s13287-021-02665-3
  7. Practical Application of Novel Test Methods to Evaluate the Potency of Botulinum Toxin: A Comparison Analysis among Widely Used Products in Korea vol.13, pp.12, 2020, https://doi.org/10.3390/toxins13120833
  8. Multi-dimensional nanoscale liquid chromatography and nano-electrospray ion-trap mass spectrometry for detection of Clostridium botulinum type C and the produced botulinum neurotoxin type C complex vol.193, 2022, https://doi.org/10.1016/j.mimet.2021.106397