DOI QR코드

DOI QR Code

Small Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Fusion by Targeting Cavities on Heptad Repeat Trimers

  • Kandeel, Mahmoud (Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University) ;
  • Yamamoto, Mizuki (Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo) ;
  • Al-Taher, Abdulla (Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University) ;
  • Watanabe, Aya (Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo) ;
  • Oh-hashi, Kentaro (Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University) ;
  • Park, Byoung Kwon (Department of Microbiology, Hallym University College of Medicine) ;
  • Kwon, Hyung-Joo (Department of Microbiology, Hallym University College of Medicine) ;
  • Inoue, Jun-ichiro (Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo) ;
  • Al-Nazawi, Mohammed (Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University)
  • Received : 2019.12.02
  • Accepted : 2020.01.23
  • Published : 2020.07.01

Abstract

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a newly emerging viral disease with fatal outcomes. However, no MERS-CoV-specific treatment is commercially available. Given the absence of previous structure-based drug discovery studies targeting MERS-CoV fusion proteins, this set of compounds is considered the first generation of MERS-CoV small molecule fusion inhibitors. After a virtual screening campaign of 1.56 million compounds followed by cell-cell fusion assay and MERS-CoV plaques inhibition assay, three new compounds were identified. Compound numbers 22, 73, and 74 showed IC50 values of 12.6, 21.8, and 11.12 µM, respectively, and were most effective at the onset of spike-receptor interactions. The compounds exhibited safe profiles against Human embryonic kidney cells 293 at a concentration of 20 µM with no observed toxicity in Vero cells at 10 µM. The experimental results are accompanied with predicted favorable pharmacokinetic descriptors and drug-likeness parameters. In conclusion, this study provides the first generation of MERS-CoV fusion inhibitors with potencies in the low micromolar range.

Keywords

References

  1. Bosch, B. J., van der Zee, R., de Haan, C. A. and Rottier, P. J. (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77, 8801-8811. https://doi.org/10.1128/JVI.77.16.8801-8811.2003
  2. Chan, J. F., Lau, S. K., To, K. K., Cheng, V. C., Woo, P. C. and Yuen, K. Y. (2015) Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol. Rev. 28, 465-522. https://doi.org/10.1128/CMR.00102-14
  3. Cho, S. Y., Kang, J. M., Ha, Y. E., Park, G. E., Lee, J. Y., Ko, J. H., Lee, J. Y., Kim, J. M., Kang, C. I., Jo, I. J., Ryu, J. G., Choi, J. R., Kim, S., Huh, H. J., Ki, C. S., Kang, E. S., Peck, K. R., Dhong, H. J., Song, J. H., Chung, D. R. and Kim, Y. J. (2016) MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study. Lancet 388, 994-1001. https://doi.org/10.1016/S0140-6736(16)30623-7
  4. Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P. and Shenkin, P. S. (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739-1749. https://doi.org/10.1021/jm0306430
  5. Galasiti Kankanamalage, A. C., Kim, Y., Damalanka, V. C., Rathnayake, A. D., Fehr, A. R., Mehzabeen, N., Battaile, K. P., Lovell, S., Lushington, G. H., Perlman, S., Chang, K. O. and Groutas, W. C. (2018) Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element. Eur. J. Med. Chem. 150, 334-346. https://doi.org/10.1016/j.ejmech.2018.03.004
  6. Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Li, H., Wang, Q., Xiao, H., Tan, W., Yan, J. and Gao, G. F. (2013) Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus. J. Virol. 87, 13134-13140. https://doi.org/10.1128/JVI.02433-13
  7. Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T. and Banks, J. L. (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750-1759. https://doi.org/10.1021/jm030644s
  8. Huang, X., Li, M., Xu, Y., Zhang, J., Meng, X., An, X., Sun, L., Guo, L., Shan, X., Ge, J., Chen, J., Luo, Y., Wu, H., Zhang, Y., Jiang, Q. and Ning, X. (2019) Novel gold nanorod-based HR1 peptide inhibitor for Middle East respiratory syndrome coronavirus. ACS Appl. Mater. Interfaces 11, 19799-19807. https://doi.org/10.1021/acsami.9b04240
  9. Kandeel, M., Al-Taher, A., Li, H., Schwingenschlogl, U. and Al-Nazawi, M. (2018) Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers. Comput. Biol. Chem. 75, 205-212. https://doi.org/10.1016/j.compbiolchem.2018.05.020
  10. Kandeel, M., Altaher, A. and Alnazawi, M. (2019) Molecular dynamics and inhibition of MERS CoV papain-like protease by small molecule imidazole and aminopurine derivatives. Lett. Drug Des. Disc. 16, 584-591. https://doi.org/10.2174/1570180815666180918161922
  11. Kandeel, M., Elaiziz, M., Kandeel, A., Altaher, A. and Kitade, Y. (2014) Association of host tropism of Middle East syndrome coronavirus with the amino acid structure of host cell receptor dipeptidyl peptidase 4. Acta Virol. 58, 359-363. https://doi.org/10.4149/av_2014_04_359
  12. Kim, Y., Cheon, S., Min, C. K., Sohn, K. M., Kang, Y. J., Cha, Y. J., Kang, J. I., Han, S. K., Ha, N. Y., Kim, G., Aigerim, A., Shin, H. M., Choi, M. S., Kim, S., Cho, H. S., Kim, Y. S. and Cho, N. H. (2016) Spread of mutant Middle East respiratory syndrome coronavirus with reduced affinity to human CD26 during the South Korean outbreak. MBio 7, e00019.
  13. Kirchmair, J., Distinto, S., Liedl, K. R., Markt, P., Rollinger, J. M., Schuster, D., Spitzer, G. M. and Wolber, G. (2011) Development of anti-viral agents using molecular modeling and virtual screening techniques. Inf. Disord. Drug Targets 11, 64-93. https://doi.org/10.2174/187152611794407782
  14. Lee, H., Ren, J., Pesavento, R. P., Ojeda, I., Rice, A. J., Lv, H., Kwon, Y. and Johnson, M. E. (2019) Identification and design of novel small molecule inhibitors against MERS-CoV papain-like protease via high-throughput screening and molecular modeling. Bioorg. Med. Chem. 27, 1981-1989. https://doi.org/10.1016/j.bmc.2019.03.050
  15. Lu, L., Liu, Q., Zhu, Y., Chan, K. H., Qin, L., Li, Y., Wang, Q., Chan, J. F., Du, L., Yu, F., Ma, C., Ye, S., Yuen, K. Y., Zhang, R. and Jiang, S. (2014) Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat. Commun. 5, 3067. https://doi.org/10.1038/ncomms4067
  16. Lundin, A., Bergström, T., Bendrioua, L., Kann, N., Adamiak, B. and Trybala, E. (2010) Two novel fusion inhibitors of human respiratory syncytial virus. Antiviral Res. 88, 317-324. https://doi.org/10.1016/j.antiviral.2010.10.004
  17. Memish, Z. A., Zumla, A. I., Al-Hakeem, R. F., Al-Rabeeah, A. A. and Stephens, G. M. (2013) Family cluster of Middle East respiratory syndrome coronavirus infections. N. Engl. J. Med. 368, 2487-2494. https://doi.org/10.1056/NEJMoa1303729
  18. Oh-hashi, K., Soga, A., Naruse, Y., Takahashi, K., Kiuchi, K. and Hirata, Y. (2018) Elucidating post-translational regulation of mouse CREB3 in Neuro2a cells. Mol. Cell. Biochem. 448, 287-297. https://doi.org/10.1007/s11010-018-3333-9
  19. Park, B. K., Maharjan, S., Lee, S. I., Kim, J., Bae, J. Y., Park, M. S. and Kwon, H. J. (2019) Generation and characterization of a monoclonal antibody against MERS-CoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex. BMB Rep. 52, 397-402. https://doi.org/10.5483/bmbrep.2019.52.6.185
  20. Rahman, A. and Sarkar, A. (2019) Risk factors for fatal Middle East respiratory syndrome coronavirus infections in Saudi Arabia: analysis of the WHO line list, 2013-2018. Am. J. Public Health 109, 1288-1293. https://doi.org/10.2105/AJPH.2019.305186
  21. Rahman, M. M., Hosen, M. B., Howlader, M. Z. H. and Kabir, Y. (2019) Lead molecule prediction and characterization for designing MERS-CoV 3C-like protease inhibitors: an in silico approach. Curr. Comput. Aided Drug Des. 15, 82-88.
  22. Shen, L., Niu, J., Wang, C., Huang, B., Wang, W., Zhu, N., Deng, Y., Wang, H., Ye, F., Cen, S. and Tan, W. (2019) High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J. Virol. 93, e00023-19.
  23. Su, S., Wong, G., Liu, Y., Gao, G. F., Li, S. and Bi, Y. (2015) MERS in South Korea and China: a potential outbreak threat? Lancet 385, 2349-2350. https://doi.org/10.1016/S0140-6736(15)60859-5
  24. Sun, Y., Zhang, H., Shi, J., Zhang, Z. and Gong, R. (2017) Identification of a novel inhibitor against Middle East respiratory syndrome coronavirus. Viruses 9, E255.
  25. Wang, C., Xia, S., Zhang, P., Zhang, T., Wang, W., Tian, Y., Meng, G., Jiang, S. and Liu, K. (2018) Discovery of hydrocarbon-stapled short alpha-helical peptides as promising Middle East respiratory syndrome coronavirus (MERS-CoV) fusion inhibitors. J. Med. Chem. 61, 2018-2026. https://doi.org/10.1021/acs.jmedchem.7b01732
  26. Wang, H., Li, X., Nakane, S., Liu, S., Ishikawa, H., Iwamoto, A. and Matsuda, Z. (2014) Co-expression of foreign proteins tethered to HIV-1 envelope glycoprotein on the cell surface by introducing an intervening second membrane-spanning domain. PLoS ONE 9, e96790. https://doi.org/10.1371/journal.pone.0096790
  27. Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Fu, L., Cui, Y., Liu, X., Arledge, K. C., Chen, Y. H., Zhang, L. and Wang, X. (2013) Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 23, 986-993. https://doi.org/10.1038/cr.2013.92
  28. Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Ying, T., Lu, L. and Jiang, S. (2014) Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res. 194, 200-210. https://doi.org/10.1016/j.virusres.2014.10.007
  29. Xu, W., Pu, J., Su, S., Hua, C., Su, X., Wang, Q., Jiang, S. and Lu, L. (2019) Revisiting the mechanism of enfuvirtide and designing an analog with improved fusion inhibitory activity by targeting triple sites in gp41. AIDS 33, 1545-1555. https://doi.org/10.1097/QAD.0000000000002208
  30. Yamamoto, M., Matsuyama, S., Li, X., Takeda, M., Kawaguchi, Y., Inoue, J. I. and Matsuda, Z. (2016) Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob. Agents Chemother. 60, 6532-6539. https://doi.org/10.1128/AAC.01043-16

Cited by

  1. A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus vol.92, pp.9, 2020, https://doi.org/10.1002/jmv.25928
  2. Discovery of New Fusion Inhibitor Peptides against SARS-CoV-2 by Targeting the Spike S2 Subunit vol.29, pp.3, 2021, https://doi.org/10.4062/biomolther.2020.201
  3. Differential Signaling and Virus Production in Calu-3 Cells and Vero Cells upon SARS-CoV-2 Infection vol.29, pp.3, 2020, https://doi.org/10.4062/biomolther.2020.226
  4. Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and cell protectives against SARS-CoV-2 papain-like protease vol.39, pp.14, 2021, https://doi.org/10.1080/07391102.2020.1784291