References
- Edunov, S., Ott, M., Auli, M., & Grangier, D. (2018). Understanding back-translation at scale. arXiv preprint arXiv:1808.09381.
- Currey, A., Miceli-Barone, A. V., & Heafield, K. (2017, September). Copied monolingual data improves low-resource neural machine translation. In Proceedings of the Second Conference on Machine Translation (pp. 148-156).
- Koehn, P., Och, F. J., & Marcu, D. (2003, May). Statistical phrase-based translation. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1 (pp. 48-54). Association for Computational Linguistics.
- Yamada, K., & Knight, K. (2001, July). A syntax-based statistical translation model. In Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics (pp. 523-530).
- Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
- Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
- Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104-3112).
- Kalchbrenner, N., Espeholt, L., Simonyan, K., Oord, A. V. D., Graves, A., & Kavukcuoglu, K. (2016). Neural machine translation in linear time. arXiv preprint arXiv:1610.10099.
- Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017, August). Convolutional sequence to sequence learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70 (pp. 1243-1252). JMLR. org.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
- Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
- Lample, G., & Conneau, A. (2019). Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291.
- Song, K., Tan, X., Qin, T., Lu, J., & Liu, T. Y. (2019). Mass: Masked sequence to sequence pre-training for language generation. arXiv preprint arXiv:1905.02450.
- Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad, M., ... & Zettlemoyer, L. (2020). Multilingual denoising pre-training for neural machine translation. arXiv preprint arXiv:2001.08210.
- Y. J. Jeong, C. E. Park, C. K. Lee & J. S. Kim. (2019). English-Korean Neural Machine Translation using MASS, .The 31st Annual Conference on Human & Cognitive Language Technology
- Guanghao Xu, Youngjoong Ko, Jungyun Seo. (2019). Improving Low-resource Machine Translation by utilizing Multilingual, Out-domain Resources. KIISE, 46(1), PP. 0649-0651
- J. H. Lee, B. S. Kim, Guanghao Xu, Youngjoong Ko & J. Y. Seo. (2018). English-Korean Neural Machine Translation using Subword Units KIISE 2018 (), 586-588.
- Xu, Guanghao, Youngjoong Ko, and Jungyun Seo.(2018) "Expanding Korean/English Parallel Corpora using Back-translation for Neural Machine Translation." Annual Conference on Human and Language Technology. Human and Language Technology.
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
- Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
- Sennrich, R., Haddow, B., & Birch, A. (2015). Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909.
- Kudo, T., & Richardson, J. (2018). Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226.
- Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 311-318). Association for Computational Linguistics.