DOI QR코드

DOI QR Code

A Longitudinal Analysis of Deconcentration Process for the Top 20 Airlines in China

중국 상위 20위 항공사의 탈 집중화 현상에 대한 종단적 연구

  • Chen, Jiarong (Graduate School of Logistics, Incheon National University) ;
  • Yeo, Gi-Tae (Graduate School of Logistics, Incheon National University)
  • ;
  • 여기태 (인천대학교 동북아물류대학원)
  • Received : 2020.03.31
  • Accepted : 2020.06.20
  • Published : 2020.06.28

Abstract

With the rapid development of China's economy, the aviation industry, as an important part of transportation services, has undoubtedly achieved rapid development. However, there is hardly any academic work that was based on the development of the top airlines in the Chinese airline industry. Hence, this study provides empirical research that takes into account the longitudinal development of the top 20 airlines in China from 2009 to 2018. The throughput volumes (cargo and passenger) of the airlines were analyzed by concentration indicators, namely the concentration ratio (CR), the Herfindahl- Hirschman index (HHI), the Gini coefficient, and the shift-share analysis (SSA). In this paper, the top 20 airlines have been analyzed in terms of the passenger and cargo throughput from 2009 to 2018. The calculation results of CR6, HHI and the Gini coefficient show that the airlines were extremely deconcentrated. In addition, by comparing the ABSGR of passenger and cargo throughput, it is shown that China's aviation industry is dominated by four airlines- Air China, China Eastern Airlines, China Southern Airlines and Hainan Airlines. In the future study, it is necessary to explore growth strategies to find niche markets for passenger and cargo transportation.

중국 경제의 빠른 발전과 더불어 운송 서비스의 가장 중요한 역할을 하는 항공산업은 상당한 발전을 이루고 있다. 이러한 성장에도 불구하고 중국 항공산업에서 상위 항공사만을 대상으로 발전과정을 연구한 논문은 제한적이다. 이러한 측면에서 본 연구에서는 2009년에서 2018년 기간 동안 중국 상위 20위 항공사의 종단적 발전상황에 대한 실증적 연구를 수행하는 것을 연구의 목적으로 하였다. 연구의 방법은 집중도 분석, 허핀달-허쉬만 분석, 지니계수 분석, 전이할당 분석을 활용하였으며, 분석 자료는 물동량 및 여객수를 활용하였다. 집중도 분석, 허핀달-허쉬만 분석 및 지니계수 분석결과, 중국항공사는 탈 집중화 현상을 보이는 것으로 나타났다. 절대성장치 분석결과 중국 항공산업은 여객측면에서는 상위 4개의 항공사가 선점하고 있는 것을 확인할 수 있다. 향후연구에서는 여객 및 화물운송의 틈새시장을 찾는 성장전략 모색이 필요하다.

Keywords

References

  1. X. Gao, Y. Xianzang, X. You, Y. Dang, G. Chen & X. Wang. (2018). Reachability for airline networks: fast algorithm for shortest path problem with time windows. Theoretical Computer Science, 749(21), 66-79. DOI :10.1016/j.tcs.2018.01.016
  2. M. G. Tsionas, Z. Chen & P. Wanke. (2017). A structural vector autoregressive model of technical efficiency and delays with an application to Chinese airlines. Transportation Research Part A: Policy and Practice, 101, 1-10. DOI : 10.1016/j.tra.2017.05.003
  3. Z. Wang, C. Hofer & M. E. Dresner. (2013). Financial condition, safety investment and accident propensity in the US airline industry: A structural analysis. Transportation Research Part E: Logistics and Transportation Review, 49(1), 24-32. DOI : 10.1016/j.tre.2012.07.001
  4. International Air Transport Association. (2019). Chinese airlines, https://www.iata.org/
  5. S. Nenem, A. Graham & N. Dennis. (2020). Airline schedule and network competitiveness: A consumer-centric approach for business travel. Annals of Tourism Research.
  6. S. Maertens. (2018). A metric to assess the competitive position of airlines and airline groups in the intra-European air transport market. Research in Transportation Economics, 72, 65-73. DOI : 10.1016/j.retrec.2018.07.018
  7. X. Liu, D. Zhou, P. Zhou & Q. Wang. (2017). Dynamic carbon emission performance of Chinese airlines: A global Malmquist index analysis. Journal of Air Transport Management, 65, 99-109. DOI : 10.1016/j.jairtraman.2017.09.009
  8. M. V. R. Oliveira & A. V. M. Oliveira. (2018). What drives effective competition in the airline industry? An empirical model of city-pair market concentration. Transport Policy, 63, 165-175. DOI : 10.1016/j.tranpol.2017.12.021
  9. Z. Chen, P. Tzeremes & N. G. Tzeremes. (2018). Convergence in the Chinese airline industry : A Malmquist productivity analysis. Journal of Air Transport Management. 73, 77-86. DOI : 10.1016/j.jairtraman.2018.08.010
  10. K. Wang, W. Xia, A. Zhang & Q. Zhang. (2018). Effects of train speed on airline demand and price: Theory and empirical evidence from a natural experiment, Transportation Research Part B : Methodological, 114, 99-130. DOI : 10.1016/j.trb.2018.05.017
  11. Y. H. Chang, C. H. Yeh & P. S. Wu. (2018). Evaluating airline crisis management performance: The cases of flights GE222 and GE235 crash accidents. Journal of Air Transport Management, 70, 62-72. DOI : 10.1016/j.jairtraman.2018.04.017
  12. F. Dobruszkes. (2012). The geography of European low-cost airline networks: a contemporary analysis. Journal of Transport Geography, 28, 75-88. DOI: 10.1016/j.jtrangeo.2012.10.012
  13. Y. Wang, Y. Zhou, Mark Hansen & Christopher Chin. (2019). Scheduled block time setting and on-time performance of U.S. and Chinese airlines-A comparative analysis. Transportation Research Part A: Policy and Practice, 130, 825-843. DOI : 10.1016/j.tra.2019.09.043
  14. M. M. Yu, L. H. Chen & H. Chiang. (2017). The effects of alliances and size on airlines' dynamic operational performance. Transportation Research Part A: Policy and Practice, 106, 197-214. DOI : 10.1016/j.tra.2017.09.015
  15. Z. Chen, P. Tzeremes & N. G. Tzeremes. (2018). Convergence in the Chinese airline industry: A Malmquist productivity analysis. Journal of Air Transport Management, 73, 77-86. DOI : 10.1016/j.jairtraman.2018.08.010
  16. J. Bowen. (2019). Giants Flying in Different Directions: Budget Airlines in India and China. Low-Cost Carriers in Emerging Countries, 197-230. DOI : 10.1016/B978-0-12-811393-6.00009-5
  17. C. K. Chow. (2015). On-time performance, passenger expectations and satisfaction in the Chinese airline industry. Journal of Air Transport Management, 47, 39-47. DOI : 10.1016/j.jairtraman.2015.04.003
  18. H. Yang, F. Dobruszkes, J. Wang, M. Dijst & P. Witte. (2018). Comparing China's urban systems in high-speed railway and airline networks. Journal of Transport Geography, 68, 233-244. DOI : 10.1016/j.jtrangeo.2018.03.015
  19. W. Ma, Q. Wang, H. Yang & Y. Zhang. (2019). An analysis of price competition and price wars in Australia's domestic airline market. Transport Policy, 81, 163-172. DOI : 10.1016/j.tranpol.2019.06.008
  20. P. J. Pineda, J. H. Liou, C. Hsu & Y. C. Chuang, (2018). An integrated MCDM model for improving airline operational and financial performance. Journal of Air Transport Management, 68, 103-117. DOI : 10.1016/j.jairtraman.2017.06.003
  21. M. Ji, C. Yang, Y. Li, Q. Xu & R. He. (2018). The influence of trait mindfulness on incident involvement among Chinese airline pilots: The role of risk perception and flight experience. Journal of Safety Research, 66, 161-168. DOI : 10.1016/j.jsr.2018.07.005
  22. W. T. Chen, K. Huang & M. N. Ardiansyah. (2018). A mathematical programming model for aircraft leasing decisions. Journal of Air Transport Management, 69, 15-25. DOI : 10.1016/j.jairtraman.2018.01.005
  23. H. Yu, Y. Zhang, A. Zhang, K. Wang & Q. Cui.(2019). A comparative study of airline efficiency in China and India: A dynamic network DEA approach. Research in Transportation Economics, 76, 100746. DOI : 10.1016/j.retrec.2019.100746
  24. J. Burton & P. Hanlon. (1994). Airline alliances: cooperating to compete. Journal of Air Transport Management, 1(4), 209-227. DOI : 10.1016/0969-6997(94)90013-2
  25. J. K. Brueckner & P. T. Spiller. (1991). Competition and mergers in airline networks. International. Journal of Industrial Organization, 9(3), 323-342. DOI : 10.1016/0167-7187(91)90015-D
  26. D. Lee. (2003). Concentration and price trends in the US domestic airline industry: 1990-2000. Journal of Air Transport Management, 9(2), 91-101. DOI : 10.1016/S0969-6997(02)00046-7
  27. D. E. Pitfield. (2007). The impact on traffic, market shares and concentration of airline alliances on selected European-US routes. Journal of Air Transport Management, 13(4), 192-202. DOI : 10.1016/j.jairtraman.2007.03.002
  28. S. Oliveira, N. Gregory, F. Costa, T. Gibson & M. Costa. (2017). Efficiency of low versus high airline pressure in stunning cattle with a pneumatically powered penetrating captive bolt gun. Meat Science, 130, 64-68. DOI : 10.1016/j.meatsci.2017.04.007
  29. Civil Aviation Administration of China. (2019). Cargo and passenger volumes of airlines, http://www.caac.gov.cn/XXGK/XXGK/
  30. G. Lohmann & T. Koo. (2013). The airline business model spectrum. Journal of Air Transport Management, 31, 7-9. DOI : 10.1016/j.jairtraman.2012.10.005
  31. D. A. Jean & G. Lohmann. (2016). Revisiting the airline business model spectrum: The influence of post global financial crisis and airline mergers in the US (2011-2013). Research in Transportation Business & Management, 21, 76-83.DOI : 10.1016/j.rtbm.2016.06.002
  32. Q. Cui, Y. Li & Y. M. Wei. (2017). Exploring the impacts of EU ETS on the pollution abatement costs of European airlines: An application of Network Environmental Production Function. Transport Policy, 60, 131-142. DOI : 10.1016/j.tranpol.2017.09.013
  33. H. Orth & U. Weidmann. (2015). Quantifying the Effects of Activity Concentration at Airports on Public Transport Using an Iterative Reduction Procedure. Transportation Research Procedia, 102015, 503-513. DOI : 10.1016/j.trpro.2015.09.004
  34. R. E. Dodson, E. A. Houseman, B. M. Jonathan & I. Levy. (2009). An analysis of continuous black carbon concentrations in proximity to an airport and major roadways. Atmospheric Environment, 43(24), 3764-3773. DOI : 10.1016/j.atmosenv.2009.04.014
  35. A. Graham. (2006). Have the major forces driving leisure airline traffic changed?. Journal of Air Transport Management, 12(1), 14-20. DOI : 10.1016/j.jairtraman.2005.09.002
  36. V. Valdes & D. Gillen. (2018). The consumer welfare effects of slot concentration and reallocation: A study of Mexico City International Airport. Transportation Research Part A: Policy and Practice, 114, 56-269. DOI : 10.1016/j.tra.2018.05.013
  37. C. H. Lee & C. W. Hooy. (2012). Determinants of systematic financial risk exposures of airlines in North America, Europe and Asia. Journal of Air Transport Management, 24, 31-35. DOI : 10.1016/j.jairtraman.2012.06.003
  38. W. Homsombat, Z. Lei & X. Fu. (2014). Competitive effects of the airlines-within-airlines strategy -Pricing and route entry patterns. Transportation Research Part E: Logistics and Transportation Review, 63, 1-16. DOI : 10.1016/j.tre.2013.12.008
  39. C. Casanueva, A. Gallego, I. Castro & M. Sancho. (2014). Airline alliances: Mobilizing network resources. Tourism Management, 44, 88-98. DOI : 10.1016/j.tourman.2014.02.011
  40. Y. Li & Q. Cui. (1991). Carbon neutral growth from 2020 strategy and airline environmental inefficiency: A Network Range Adjusted Environmental Data Envelopment Analysis. Applied Energy, 1991, 13-24. DOI : 10.1016/j.apenergy.2017.04.072
  41. R. Bogdane, O. Gorbacovs, V. Sestakovs & I. Arandas. (2019). Development of a model for assessing the level of flight safety in an airline using concept of risk. Procedia Computer Science, 1492019, 365-374. DOI : 10.1016/j.procs.2019.01.150
  42. M. Su, W. Luan & T. Su. (2019). Effect of high-speed rail competition on airlines' intertemporal price strategies. Journal of Air Transport Management, 80, 101694. DOI : 10.1016/j.jairtraman.2019.101694
  43. P. Suau-Sanchez, G. Burghouwt. (2011). The geography of the Spanish airport system: spatial concentration and deconcentration patterns in seat capacity distribution, 2001-2008. Journal of Transport Geography, 19(2), 244-254. DOI : 10.1016/j.jtrangeo.2010.03.019
  44. D. E. Rose. (1991). Appropriate Uses of Hybrid Systems. Connectionist Models, 1991, 277-286. DOI : 10.1016/B978-1-4832-1448-1.50034-2
  45. K. Richards. (1996). The effect of Southwest airlines on U.S. Airline markets. Research in Transportation Economics, 41996, 33-47. DOI : 10.1016/S0739-8859(96)80004-7
  46. Y. Li, Y. Z. Wang & Q. Cui. (2015). Evaluating airline efficiency: An application of Virtual Frontier Network SBM. Transportation Research Part E : Logistics and Transportation Review, 81, 1-17. DOI : 10.1016/j.tre.2015.06.006
  47. S. H. Tsaur, T. Y. Chang & C. H. Yen. (2002). The evaluation of airline service quality by fuzzy MCDM. Tourism Management, 23(2), 107-115. DOI : 10.1016/S0261-5177(01)00050-4
  48. Y. Suzuki, J. E. Tyworth & R. A. Novack. (2001). Airline market share and customer service quality: a reference-dependent model. Transportation Research Part A: Policy and Practice, 35(9), 773-788. DOI : 10.1016/S0965-8564(00)00016-1
  49. P. Stamolampros & N. Korfiatis. (2019). Airline service quality and economic factors: An ARDL approach on US airlines. Journal of Air Transport Management, 77, 24-31. DOI : 10.1016/j.jairtraman.2019.03.002
  50. T. E Notteboom. (1997). Concentration and load centre development in the European container port system. Journal of Transport Geography, 5(2), 99-115. DOI : 10.1016/S0966-6923(96)00072-5