DOI QR코드

DOI QR Code

Xenon in molten salt reactors: The effects of solubility, circulating particulate, ionization, and the sensitivity of the circulating void fraction

  • Price, Terry J. (University of Ontario Institute of Technology) ;
  • Chvala, Ondrej (University of Tennessee) ;
  • Taylor, Zack (University of Tennessee)
  • 투고 : 2019.08.10
  • 심사 : 2019.11.20
  • 발행 : 2020.06.25

초록

Xenon behaves differently in molten salt reactors (MSRs) compared to solid fuel reactors. This behavior needs exploring due to the large reactivity effect of the 135Xe isotope, given the current interest in MSR power plant development for commercial deployment. This paper focuses on select topics in xenon transport, reviews relevant past works, and proposes specific research questions to advance the state of the art in each of the focus areas. Specifically, the paper discusses the issue of xenon solubility in MSRs, the behavior of particulates circulating in MSR fuel salt and its influence on the xenon transport, the possibility of ionization of xenon atoms which changes its effective size and thus affects its mass transport, and finally the issue of circulating void fraction and how it is measured. This work presents specific recommendations for MSR designers to research the limits of Henry's law validity, circulating particulate scrubbers, validity of mass transport coefficients in high radiation fields, and the effects of pump speed on circulating void fraction.

키워드

참고문헌

  1. J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlir, R. Yoshioka, D. Zhimin, The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77 (2014) 308-319. https://doi.org/10.1016/j.pnucene.2014.02.014
  2. E. Baum, H. Knox, T. Miller, Nuclides and Isotopes: Chart of the Nuclides, 16 edition, Lockheed Martin, 2010.
  3. S. Ball, T. Kerlin, ORNL-TM-1070: Stability Analysis of the Molten-Salt Reactor Experiment, Oak Ridge National Laboratory, 1965. Technical report.
  4. J. Kathawa, C. Fry, M. Thoennessen, Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes, Atomic Data Nucl. Data Tables 99 (1) (2013) 22-52. ISSN 0092-640X. https://doi.org/10.1016/j.adt.2012.01.004
  5. R. Robertson, ORNL-TM-4541: Conceptual Design Study of a Single-Fluid Molten-Salt Breeder Reactor, Oak Ridge National Laboratory, 1971. Technical report.
  6. J. Miller, ORNL-CF-61-5-62: Xenon Poisoning in Molten Salt Reactors, Oak Ridge National Laboratory, 1961. Technical report.
  7. R. Kedl, A. Houtzeel, ORNL-4069: Development of a Model for Computing Xe-135 Migration in the MSRE. Technical Report, Oak Ridge National Laboratory, 1967.
  8. J. Engel, R. Steffy, ORNL-TM-3464: Xenon Behavior in the Molten Salt Reactor Experiment, Oak Ridge National Laboratory, 1971. Technical report.
  9. Y. Shimazu, Transient xenon analysis in a molten salt breeder reactor, J. Nucl. Sci. Technol. 14 (11) (1977) 805-810. https://doi.org/10.1080/18811248.1977.9730841
  10. K. Suzuki, Y. Shimazu, Transient xenon effect on plant control in MSRs-validation of simulation model, in: Proceedings of ICAPP '04, Pittsburgh, PA, USA, 2004.
  11. T. Price, O. Chvala, R. Taylor, Molten salt reactor xenon analysis: review and decomposition, J. Nucl. Eng. Radiat. Sci. (2019). Accepted, awaiting publication.
  12. P. Westh, C. Haynes, Y. Koga, How dilute is the Henry's law region? II, J. Phys. Chem. B 102 (25) (1998) 4982-4987. https://doi.org/10.1021/jp9803541
  13. G. Watson, R. Evans III, W. Grimes, N. Smith, Solubility of noble gases in molten fluorides. In LiF-BeF2, J. Chem. Eng. Data 7 (2) (1962) 285-287. https://doi.org/10.1021/je60013a038
  14. J. Groza, J. Shackelford, Materials Processing Handbook, CRC Press, 2007.
  15. E. Compere, S. Kirslis, E. Bohlmann, F. Blankenship, W. Grimes, ORNL-4865: Fission Product Behavior in the Molten Salt Reactor Experiment, Oak Ridge National Laboratory, 1975. Technical report.
  16. W. Burch, ORNL-TM-228: Measurement of Xenon Poisoning in the HRT. Technical Report, Oak Ridge National Laboratory, 1962.
  17. James R. Welty, Charles E. Wicks, Robert E. Wilson, Fundamentals of Momentum, Heat and Mass Transfer, John Wiely and Sons, Inc., New York, 1969.
  18. R. Kedl, ORNL-TM-3884: the Migration of a Class of Fission Products (Noble Metals) in the Molten-Salt Reactor Experiment, Oak Ridge National Laboratory, 1972. Technical report.
  19. C. Gabbard, ORNL-TM-4122: Development of a Venturi Type Bubble Generator for Use in the Molten Salt Reactor Xenon Removal System, Oak Ridge National Laboratory, 1972. Technical report.
  20. A. Vazirizadeh, J. Bouchard, Y. Chen, Effect of particles on bubble size distribution and gas hold-up in column flotation, Int. J. Miner. Process. 157 (2016) 163-173. https://doi.org/10.1016/j.minpro.2016.10.005
  21. L. Schramm, Emulsions, Foams, and Suspensions: Fundamentals and Applications, Wiley, 2006.
  22. H. McCoy, B. McNabb, ORNL-TM-4174: Postirradiation Examination of Materials from the MSRE, Oak Ridge National Laboratory, 1972. Technical report.
  23. A. Kramida, Yu Ralchenko, J. Reader, NIST ASD Team, NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available:, National Institute of Standards and Technology, Gaithersburg, MD, 2018 [2018, November 13], https://physics.nist.gov/asd.
  24. M. James, Energy released in fission, J. Nucl. Energy 23 (1969) 517-536. https://doi.org/10.1016/0022-3107(69)90042-2
  25. S. Oberstedt, R. Billnert, A. Gatera, W. Geerts, P. Halipr, Prompt fission $\gamma$ -ray spectra characteristics - a first summary, Phys. Procedia 64 (2015) 83-90. https://doi.org/10.1016/j.phpro.2015.04.011
  26. E. Cussler, Diffusion: Mass Transfer in Fluid Systems, third ed., Cambridge University Press, 2007.
  27. J. Bockris, A. Reddy, Modern Electrochemistry, vol. 1, Ionics. Kluwer Academic Publishers, 1998.
  28. P. Pau, J. Berg, W. McMillan, Application of Stokes' law to ions in aqueous solution, J. Phys. Chem. 94 (6) (1990) 2671-2679. https://doi.org/10.1021/j100369a080
  29. M. Blander, W. Grimes, N. Smith, G. Watson, Solubility of noble gases in molten fluorides. II. In the Lif-NaF-LF Eutectic mixtures, J. Phys. Chem. 63 (7) (1959) 1164-1167. https://doi.org/10.1021/j150577a033
  30. W. Haynes (Ed.), CRC Handbook of Chemistry and Physics, 97th Edition, CRC Press, 2016.
  31. R. Svehla, R-132: Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures, NASA, 1962. Technical report.
  32. M. Born, Atomic Physics, eighth ed., Dover Publications, 2013.
  33. D. Robinson, J. Fry, ORNL-TM-2318: Determination of the Void Fraction in the MSRE Using Small Induced Pressure Pertubations, Oak Ridge National Laboratory, 1969. Technical report.
  34. D. Fry, R. Kryter, R. Robinson, ORNL-TM-2315: Measurement of Helium Void Fraction in the MSRE Fuel Salt Using Neutron-Noise Analysis, Oak Ridge National Laboratory, 1968. Technical report.