• Title/Summary/Keyword: xe-135

Search Result 11, Processing Time 0.026 seconds

Optimization of Acquisition Time of Beta-Gamma Coincidence Counting System for Radioxenon Measurement (방사성제논 탐지를 위한 베타-감마 동시 계측시스템의 측정시간 최적화)

  • Byun, Jong-In;Park, Hong-Mo;Choi, Hee-Yeoul;Song, Myeong-Han;Yun, Ju-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.3
    • /
    • pp.181-186
    • /
    • 2015
  • Measurement of xenon radioisotopes from nuclear fission is a key element for monitoring underground nuclear weapon tests. $^{131m}Xe$, $^{133}Xe$, $^{133}mXe$ and $^{135}Xe$ in the air can be detected via low background systems such as a beta-gamma coincidence counting system. Radioxenon monitoring is performed through air sampling, xenon extraction, measurement and spectrum analysis. The minimum detectable concentration of $^{135}Xe$ can be significantly variable depending on the sampling time, extraction time and data acquisition time due to its short half-life. In order to optimize the acquisition time with respect to certain experimental parameters such as sampling and xenon extraction, theoretical approach and experiment using SAUNA system were performed to determine the time to minimize the minimum detectable concentration, which the results were discussed.

Optimal Control of Xenon Poison In Nuclear Reactor (원자로에 있어서 Xenon 독소의 최적제어)

  • 곽은호;고병준
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.5
    • /
    • pp.17-23
    • /
    • 1976
  • The buildup of fission product, i.e. Xe-135 poisoning, is a prime factor in restarting a nuclear reactor from the shutdown, which was under normal operation in the high flux thermal reactor, It is caused by the high absorption crosssection of Xe-135 to thermal neutrons and its long half life, from which the thermal power is affected. It is then possible to restart a nuclear reactor after the sufficient excess reactivity to override this poisoning must be inserted, or its concentration is decreased sufficiently when its temporary shutdown is required. As ratter of fact, these have an important influence not only on reactor safety but also on economic aspect in operation. Considering these points in this study, the shutdown process was cptimized using the Pontryagin's maximum principle so that the shutdown mirth[d was improved as to restart the reactor to its fulpower at any time, but the xenon concentration did not excess the constrained allowable value during and after shutdown, at the same time all the control actions were completed within minimum time from beginning of the shutdown.

  • PDF

An extensive characterization of xenon isotopic activity ratios from nuclear explosion and nuclear reactors in neighboring countries of South Korea

  • Ser Gi Hong;Geon Hee Park;Sang Woo Kim;Yu Yeon Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.601-610
    • /
    • 2024
  • This paper gives an extensive analysis on the characterization of xenon isotopic ratios for various nuclear reactors and nuclear explosions through neutronic depletion codes. The results of the characterization can be used for discriminating the sources of the xenon isotopes' release among the nuclear explosions and nuclear reactors. The considered sources of the xenon radionuclides do not only include PWR, CANDU, and nuclear explosions using uranium and plutonium bombs, but also IRT-200 and 5MWe Yongbyon (MAGNOX reactor) research reactors operated in North Korea. A new data base (DB) on xenon isotopic activity ratios was produced using the results of the characterization, which can be used in discrimination of the sources of xenon isotopes. The results of the study show that 5MWe Yongbyon reactor has quite different characteristics in 135Xe/133Xe ratio from the PWRs and the nuclear reactors have different characteristics in 135Xe/133Xe ratios from the nuclear explosions.

Xenon in molten salt reactors: The effects of solubility, circulating particulate, ionization, and the sensitivity of the circulating void fraction

  • Price, Terry J.;Chvala, Ondrej;Taylor, Zack
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1131-1136
    • /
    • 2020
  • Xenon behaves differently in molten salt reactors (MSRs) compared to solid fuel reactors. This behavior needs exploring due to the large reactivity effect of the 135Xe isotope, given the current interest in MSR power plant development for commercial deployment. This paper focuses on select topics in xenon transport, reviews relevant past works, and proposes specific research questions to advance the state of the art in each of the focus areas. Specifically, the paper discusses the issue of xenon solubility in MSRs, the behavior of particulates circulating in MSR fuel salt and its influence on the xenon transport, the possibility of ionization of xenon atoms which changes its effective size and thus affects its mass transport, and finally the issue of circulating void fraction and how it is measured. This work presents specific recommendations for MSR designers to research the limits of Henry's law validity, circulating particulate scrubbers, validity of mass transport coefficients in high radiation fields, and the effects of pump speed on circulating void fraction.

Hyperpolarized 129 NMR Study of TiO2 Nanotubes

  • Lee, Sang-Man;Lee, Soon-Chang;Mehrotra, Vandana;Kim, Hae-Jin;Lee, Hee-Cheon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.511-514
    • /
    • 2012
  • A continuous flow hyperpolarized (HP) $^{129}Xe$ NMR spectroscopy was employed for the first time to investigate $TiO_2$ nanotubes (Ti-NTs) synthesized from commercial nanoparticles with different reaction times. A single peak attributing to channels for Ti-NTs was observed for variable temperature HP $^{129}Xe$ NMR spectra. It was also noted that there is alteration in value for heat of adsorption, ${\Delta}H$ from $12.6{\pm}1.3$ to $16.4{\pm}0.4kJ/mol$ and variation in chemical shift of the xenon adsorbed in channels, ${\delta}_s$ from $120{\pm}2\sim135{\pm}9ppm$ which were closely correlated to channel length and it was shown that P25-24 Ti-NTs with longest channel is most favorite Ti-NTs for Xe adsorption.

Rapid Heating of Ultrafine $Si_3N_4$ Powder Compacts under the Controlled Thermograms (가열이력 제어에 의한 $Si_3N_4$ 미분말 시편의 급속가열)

  • 이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.181-188
    • /
    • 1993
  • The sintering and renitridation behaviors of ultrafine Si3N4 powder compacts, which were heavily oxidized and/or free-Si rich, were investigated with particular attentiion to microstructures. The specimens were heated without restoring to additives and pressure by controlling heating process attained a Xe image apparatus. The effect of particle size, free-Si contents, decomposition and renitridation, were investigated. When fired to 1$650^{\circ}C$ within 15 sec and then immediately held at 135$0^{\circ}C$ for 10min N2 atmosphere, significant densification took place in the limited region, in addition to decreasing oxygen contents to less than 0.3wt%. On the other hand, specimens decomposed due to overheating at the initial stage were rapidly renitridated at the relatively lower temperature of the holding stage. And, then, the activation energy for the renitridation was calculated to be 49kcal/mole.

  • PDF

Densification of Ultrafine $Si_3-N_4-SiC$ Powder Compacts by Rapid Heating under Controlled Thermograms (급속가열 이력 제어에 의한 $Si_3-N_4-SiC$계 미분말 시편의 치밀화)

  • 이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.832-838
    • /
    • 1995
  • The densifying behavior of ultrafine amorphous Si3N4 (about 20 nm)-$\beta$-SiC (about 40~80 nm) powders (O2 : 1.3~15wt%, 0$700^{\circ}C$ within 15 sec and then immediately cooled and held at 135$0^{\circ}C$ for 10 min in N2 atmosphere without resorting to additives using a Xe image heating apparatus. Using an ultrafine pure Si3N4 powder with particle size less than 30nm, further more, mixed with an appropriate amount of $\beta$-SiC, was found to be advantageous to obtain uniform and homogeneous microstructure. In addition, ultrafine Si3N4 powders were also proved to be effective as sintering additive on densifying large sized Si3N4 powder compacts.

  • PDF

Calculation of Nuclear Characteristics of the TRIGA Mark-III Reactor (TRIGA Mark-III 원자로의 노심특성계산)

  • Chong Chul Yook;Gee Yang Han;Byung Jin Jun;Ji Bok Lee;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.264-276
    • /
    • 1981
  • A simulation procedure which can represent time-dependent nuclear characteristics of TRIGA Mark-III reactor is developed. CITATION, a multi-group diffusion-depletion program, has been utilized as calculational tool. The group structure employed in this study consists of 7 groups: -3-fast and 4-thermal-which is conventionally utilized in TRIGA type reactor analysis. Three-dimensional nuclear characteristics are synthesized by combining results from two-dimensional plane calculation and two-dimensional cylinder calculation, since direct three-dimensional approach is not yet possible. An effort ia made to develope a method which can extract effective zone and group dependent bucklings by neutron diffusion theory rather than conventional zone and/or group independent Ducklings by neutron transport theory, since neutron leakage is quite high for small core such as research reactors. It is turned out that the method developed in this study gives satisfactory results. The calculation is performed under assumptions that all control rods are fully withdrawn, that no samples are inserted in the irradiation holes and that the core is located in the center of the reactor pool. Burnup-dependent variation of core excess reactivity, time dependent change of Xe-135 poisoning and reactivity worth of rotary specimen rack are calculated and compared with operation records. Neutron flux and power distribution as well as neutron spectrum in each irradiation .facility are presented.

  • PDF

A comparative study on the impact of Gd2O3 burnable neutron absorber in UO2 and (U, Th)O2 fuels

  • Uguru, Edwin Humphrey;Sani, S.F.Abdul;Khandaker, Mayeen Uddin;Rabir, Mohamad Hairie;Karim, Julia Abdul
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1099-1109
    • /
    • 2020
  • The performance of gadolinium burnable absorber (GdBA) for reactivity control in UO2 and (U, Th)O2 fuels and its impact on spent fuel characteristics was performed. Five fuel assemblies: one without GdBA fuel rod and four each containing 16, 24, 34 and 44 GdBA fuel rods in both fuels were investigated. Reactivity swing in all the FAs with GdBA rods in UO2 fuel was higher than their counterparts with similar GdBA fuel rods in (U, Th)O2 fuel. The excess reactivity in all FAs with (U, Th)O2 fuel was higher than UO2 fuel. At the end of single discharge burn-up (~ 49.64 GWd/tHM), the excess reactivity of (U, Th) O2 fuel remained positive (16,000 pcm) while UO2 fuel shows a negative value (-6,000 pcm), which suggest a longer discharge burn-up in (U, Th)O2 fuel. The concentration of plutonium isotopes and minor actinides were significantly higher in UO2 fuel than in (U, Th)O2 fuel except for 236Np. However, the concentration of non-actinides (gadolinium and iodine isotopes) except for 135Xe were respectively smaller in (U, Th)O2 fuel than in UO2 fuel but may be two times higher in (U, Th)O2 fuel due to its potential longer discharge burn-up.