DOI QR코드

DOI QR Code

우주 탐사를 위한 이중펄스 라만-레이저 유도 플라즈마 분광 시스템 개발 연구

Double Pulse Raman-Laser Induced Plasma Spectroscopy System for Space Exploration

  • Yang, Jun-Ho (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-Ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2020.02.12
  • 심사 : 2020.04.29
  • 발행 : 2020.06.01

초록

본 논문에서는 라만 분광법과 레이저 유도 플라즈마 분광법(LIPS)을 단일 유닛으로 결합한 새로운 형태의 이중 펄스 레이저 시스템을 제안하였다. 본 연구는 라만 분광법으로부터 분자 신호를 추출하면서, 동시에 레이저 유도 플라즈마 방출 신호를 향상시키고자 하였다. 달의 대기압과 같은 저압 조건에서는 플라즈마 신호 검출은 낮은 전자 밀도와 짧은 지속시간, 빠른 플라즈마 팽창 때문에 어려움을 마주치게 된다. 또한, 우주 탐사를 목표로 하는 검출 시스템의 통합에서, 레이저 시스템의 무게 최소화는 payload의 무게 측면에서 중요하다. 0.07 torr 미만의 저압 조건에서 높은 분해능의 스펙트럼 데이터를 제공하는 본 연구의 동시 분자 및 원자 검출방식은 8개의 암석을 이용하여 증명되었다. 이중 펄스 레이저로부터 생성된 연속된 플라즈마는 종래의 플라즈마 분광과 비교하여 방해석의 산소와 칼슘 신호를 2배 향상시킬 수 있었다.

A new double-pulse laser system that combines Raman and laser induced plasma spectroscopy (LIPS) in a single unit is proposed. The study attempts to enhance the laser induced plasma signals while simultaneously extracting the desired molecular signals from Raman spectroscopy. In low pressure conditions such as the lunar atmosphere, the measuring of plasma emission is hard because of the low electron density and short persistence time causing a rapid plasma expansion. Furthermore, in the integration of the detecting system aimed at space exploration, the minimization of laser system is important in terms of the payload mass. Simultaneous molecular and atomic detection that gave highly resolved spectral data at pressure below 0.07 torr is demonstrated amongst eight rock samples test. The plasma stacking produced from the double-pulse laser enhanced the signal intensity of calcium and oxygen lines in calcite matrix by twofold, compared to a conventional LIPS.

키워드

참고문헌

  1. Meslin, P. Y., Gasnault, O., Forni, O., Schröder, S., Cousin, A., Berger, G., Clegg, S., Lasue, J., Maurice, S. and Sautters, V., "Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars," Science, Vol. 341, No. 6153, 2013.
  2. Dyar, M. D., Tucker, J. M., Humphries, S., Clegg, S. M., Wiens, R. C. and Lane, M. D., "Strategies for Mars remote Laser-Induced Breakdown Spectroscopy analysis of sulfur in geological samples," Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 66, No. 1, 2011, pp. 39-56. https://doi.org/10.1016/j.sab.2010.11.016
  3. Salle, B., Cremers, D. A., Maurice, S. and Wiens, R. C., "Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples," Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 60, No. 4, 2005, pp. 479-490. https://doi.org/10.1016/j.sab.2005.02.009
  4. Choi, J. J., Choi, S. J. and Yoh, J. J., "Standoff Detection of Geological Samples of Metal, Rock, and Soil at Low Pressures Using Laser-Induced Breakdown Spectroscopy," Apply Spectroscopy, Vol. 70, No. 9, 2016, pp. 1411-1419. https://doi.org/10.1177/0003702816664858
  5. Kim, D. H., Kihm, Y. H., Choi, S. J., Choi, J. J. and Yoh, J. J., "The application of magnetic field at low pressure for optimal laser-induced plasma spectroscopy," Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 110, 2015, pp. 7-12. https://doi.org/10.1016/j.sab.2015.05.006
  6. Choi, S. J., Choi, J. J. and Yoh, J. J., "Novel control of plasma expansion direction aimed at very low pressure laser-induced plasma spectroscopy," Optic Express, Vol. 23, No. 5, 2015, pp. 6336-6344. https://doi.org/10.1364/OE.23.006336
  7. Stelmaszczyk, K., Rohwetter, P., Méjean, G., Yu, J., Salmon, E., Kasparian, J., Ackermann, R., Wolf, J. P. and Woste, L., "Long-distance remote laser-induced breakdown spectroscopy using filamentation in air," Applied Physics Letters, Vol. 85, No. 18, 2004, pp. 3977-3979. https://doi.org/10.1063/1.1812843
  8. Maurice, S., et al, "ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars," Journal of Analytical Atomic Spectrometry, Vol. 31, No. 4, 2016, pp. 863-889. https://doi.org/10.1039/C5JA00417A
  9. Abedin, M. N., Bradley, A. T., Misra, A. K., Bai, Y., Hines, G. D. and Sharma, S. K., "Standoff ultracompact micro-Raman sensor for planetary surface explorations," Apply Optics, 2018, Vol. 57, No. 1, pp. 62-68. https://doi.org/10.1364/AO.57.000062
  10. Angel, S. M., Gomer, N. R., Sharma, S. K. and McKay, C., "Remote Raman spectroscopy for planetary exploration: a review," Apply Spectroscopy, Vol. 66, No. 2, 2012, pp. 137-150. https://doi.org/10.1366/11-06535
  11. Sharma, S. K., Lucey, P. G., Ghosh, M., Hubble, H. W. and Horton, K. A., "Stand-off Raman spectroscopic detection of minerals on planetary surfaces," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 59, No. 10, 2003, pp. 2391-2407. https://doi.org/10.1016/S1386-1425(03)00080-5
  12. Moros, J., Lorenzo, J. A. and Laserna, J. J., "Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion," Analytical and Bioanalytical Chemistry, Vol. 400, No. 10, 2011, pp. 3353-3365. https://doi.org/10.1007/s00216-011-4999-y
  13. Moros, J. and Laserna, J. J., "New Raman-laser-induced breakdown spectroscopy identity of explosives using parametric data fusion on an integrated sensing platform," Analytical Chemistry, Vol. 83, No. 16, 2011, pp. 6275-6285. https://doi.org/10.1021/ac2009433
  14. Moros, J., Lorenzo, J. A., Lucena, P., Tobaria, L. M. and Lasernas, J. J., "Simultaneous Raman Spectroscopy−Laser-Induced Breakdown Spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform," Analytical Chemistry, Vol. 82, No. 4, 2010, pp. 1389-1400. https://doi.org/10.1021/ac902470v
  15. Sharma, S. K., Misra, A. K., Lucey, P. G. and Lentz, R. C., "A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 73, No. 3, 2009, pp. 468-476. https://doi.org/10.1016/j.saa.2008.08.005
  16. Zhang, X., Kirkwood, W. J., Walz, P. M., Peltzer, E. T. and Brewer, P. G., "A review of advances in deep-ocean Raman spectroscopy," Apply Spectroscopy, Vol. 66, No. 3, 2012, pp. 237-249. https://doi.org/10.1366/11-06539
  17. Sobron, P. and Wang, A., "A planetary environment and analysis chamber (PEACh) for coordinated Raman-LIBS-IR measurements under planetary surface environmental conditions," Journal of Raman Spectroscopy, Vol. 43, No. 2, 2012, pp. 212-227. https://doi.org/10.1002/jrs.3017
  18. Gasda, P. J., Acosta-Maeda, T. E., Lucey, P. G., Misra, A. K., Sharma, S. K. and Taylor, G. J., "Next generation laser-based standoff spectroscopy techniques for Mars exploration," Apply Spectroscopy, Vol. 69, No. 2, 2015, pp. 173-192. https://doi.org/10.1366/14-07483
  19. Westlake, P., Siozos, P., Philippidis, A., Apostolaki, C., Derham, B., Terlixi, A., Perdikatsis, V., Jones, R. and Angloss, D., "Studying pigments on painted plaster in Minoan, Roman and Early Byzantine Crete. A multi-analytical technique approach," Analytical and Bioanalytical Chemistry, Vol. 402, No. 4, 2012, pp. 1413-1432. https://doi.org/10.1007/s00216-011-5281-z
  20. Hoehse, M., Mory, D., Florek, S., Weritz, F., Gornushkin, I. and Panne, U., "A combined laserinduced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis," Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 64, No. 11, 2009, pp. 1219-1227. https://doi.org/10.1016/j.sab.2009.09.004
  21. Courreges-Lacoste, G. B., Ahlers, B. and Perez, F. R., "Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 68, No. 4, 2007, pp. 1023-1028. https://doi.org/10.1016/j.saa.2007.03.026
  22. Giakoumaki, A., Osticioli, I. and Anglos, D., "Spectroscopic analysis using a hybrid LIBS-Raman system," Applied Physics A, Vol. 83, No. 4, 2006, pp. 537-541. https://doi.org/10.1007/s00339-006-3541-0
  23. Dreyer, C. B., Mungas, G. S., Thanh, P. and Radziszewski, J. G., "Study of sub-mJ-excited laserinduced plasma combined with Raman spectroscopy under Mars atmosphere-simulated conditions," Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 62, No. 12, 2007, pp. 1448-1459. https://doi.org/10.1016/j.sab.2007.10.016
  24. Clegg, S. M., Wiens, R., Misra, A. K., Sharma, S. K., Lambert, J., Bender, S., Newell, R., Nowak-Lovato, K., Smrekar, S. and Dyars, M. D., "Planetary geochemical investigations using Raman and laser-induced breakdown spectroscopy," Apply Spectroscopy, Vol. 68, No. 9, 2014, pp. 925-936. https://doi.org/10.1366/13-07386
  25. Choi, S. J., Choi, J. J. and Yoh, J. J., "Advancing the experimental design for simultaneous acquisition of laser induced plasma and Raman signals using a single pulse," Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 123, 2016, pp. 1-5. https://doi.org/10.1016/j.sab.2016.07.006
  26. Lednev, V. N., Pershin, S. M., Sdvizhenskii, P. A., Grishin, M. Y., Fedorov, A. N., Bukin, V. V., Oshurko, V. B. and Shchegolikhin, A. N., "Combining Raman and laser induced breakdown spectroscopy by double pulse lasing," Analytical and Bioanalytical Chemistry, Vol. 410, No. 1, 2018, pp. 277-286. https://doi.org/10.1007/s00216-017-0719-6
  27. Babushok, V. I., DeLucia, F. C., Gottfried, J. L., Munson, C. A. and Miziolek, A. W., "Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement," Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 61, No. 9, 2006, pp. 999-1014. https://doi.org/10.1016/j.sab.2006.09.003
  28. Ahmed, R. and Baigs, M. A., "A comparative study of single and double pulse laser induced breakdown spectroscopy," Journal of Applied Physics, Vol. 106, No. 3, 2009, 033307. https://doi.org/10.1063/1.3190516
  29. Li, Y., Tian, D., Ding, Y., Yang, G., Liu, K., Wang, C. and Han, X., "A review of laser-induced breakdown spectroscopy signal enhancement," Applied Spectroscopy Reviews, Vol. 53, No. 1, 2017, pp. 1-35.