참고문헌
- Abedon, S. T., Kuhl, S. J., Blasdel, B. G. and Kutter, E. M. 2011. Phage treatment of human infections. Bacteriophage 1:66-85. https://doi.org/10.4161/bact.1.2.15845
-
Addy, H. S., Askora, A., Kawasaki, T., Fujie, M. and Yamada, T. 2012. Utilization of filamentous phage
${\varphi}RSM3$ to control bacterial wilt caused by Ralstonia solanacearum. Plant Dis. 96:1204-1209. https://doi.org/10.1094/PDIS-12-11-1023-RE - Adriaenssens, E. M., Van Vaerenbergh, J., Vandenheuvel, D., Dunon, V., Ceyssens, P.-J., De Proft, M., Kropinski, A. M., Noben, J.-P., Maes, M. and Lavigne, R. 2012. T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by 'Dickeya solani'. PLoS ONE 7:e33227. https://doi.org/10.1371/journal.pone.0033227
- Agrios, G. 2005. Plant pathology. 5th ed. Elsevier Academic Press, Burlington, MA, USA. 952 pp.
- Ahern, S. J., Das, M., Bhowmick, T. S., Young, R. and Gonzalez, C. F. 2014. Characterization of novel virulent broad-hostrange phages of Xylella fastidiosa and Xanthomonas. J. Bacteriol. 196:459-471. https://doi.org/10.1128/JB.01080-13
- Ahmad, A. A., Askora, A., Kawasaki, T., Fujie, M. and Yamada, T. 2014. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front. Microbiol. 5:321.
- Arthurs, S. P., Lacey, L. A. and Behle, R. W. 2006. Evaluation of spray-dried lignin-based formulations and adjuvants as solar protectants for the granulovirus of the codling moth, Cydia pomonella (L). J. Invertebr. Pathol. 93:88-95. https://doi.org/10.1016/j.jip.2006.04.008
- Attai, H., Rimbey, J., Smith, G. P. and Brown, P. J. B. 2017. Expression of a peptidoglycan hydrolase from lytic bacteriophages Atu_ph02 and Atu_ph03 triggers lysis of Agrobacterium tumefaciens. Appl. Environ. Microbiol. 83:e01498-17.
- Bae, J. Y., Wu, J., Lee, H. J., Jo, E. J., Murugaiyan, S., Chung, E. and Lee, S.-W. 2012. Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. J. Microbiol. Biotechnol. 22:1613-1620. https://doi.org/10.4014/jmb.1208.08072
- Balogh, B. 2002. Strategies for improving the efficacy of bacteriophages for controlling bacterial spot of tomato. M.S. thesis. University of Florida, Gainesville, FL, USA.
- Balogh, B. 2006. Characterization and use of bacteriophages associated with citrus bacterial pathogens for disease control. Ph.D. thesis. University of Florida, Gainesville, FL, USA.
- Balogh, B., Jones, J. B., Iriarte, F. B. and Momol, M. T. 2010. Phage therapy for plant disease control. Curr. Pharm. Biotechnol. 11:48-57. https://doi.org/10.2174/138920110790725302
- Balogh, B., Jones, J. B., Momol, M. T., Olson, S. M., Obradovic, A., King, P. and Jackson, L. E. 2003. Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis. 87:949-954. https://doi.org/10.1094/PDIS.2003.87.8.949
- Behlau, F., Canteros, B. I., Minsavage, G. V., Jones, J. B. and Graham, J. H. 2011. Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Appl. Environ. Microbiol. 77:4089-4096. https://doi.org/10.1128/AEM.03043-10
- Behle, R. W., McGuire, M. R. and Shasha, B. S. 1996. Extending the residual toxicity of Bacillus thuringiensis with caseinbased formulations. J. Econ. Entomol. 89:1399-1405. https://doi.org/10.1093/jee/89.6.1399
- Bhunchoth, A., Phironrit, N., Leksomboon, C., Chatchawankanphanich, O., Kotera, S., Narulita, E., Kawasaki, T., Fujie, M. and Yamada, T. 2015. Isolation of Ralstonia solanacearuminfecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. J. Appl. Microbiol. 118:1023-1033. https://doi.org/10.1111/jam.12763
- Born, Y., Fieseler, L., Klumpp, J., Eugster, M. R., Zurfluh, K., Duffy, B. and Loessner, M. J. 2014. The tail-associated depolymerase of Erwinia amylovora phage L1 mediates host cell adsorption and enzymatic capsule removal, which can enhance infection by other phage. Environ. Microbiol. 16:2168-2180. https://doi.org/10.1111/1462-2920.12212
- Born, Y., Fieseler, L., Thony, V., Leimer, N., Duffy, B. and Loessner, M. J. 2017. Engineering of bacteriophages Y2::dpoL1-C and Y2::luxAB for efficient control and rapid detection of the fire blight pathogen, Erwinia amylovora. Appl. Environ. Microbiol. 83:e00341-17.
- Borysowski, J., Weber-Dabrowska, B. and Gorski, A. 2006. Bacteriophage endolysins as a novel class of antibacterial agents. Exp. Biol. Med. (Maywood) 231:366-377. https://doi.org/10.1177/153537020623100402
- Boule, J., Sholberg, P. L., Lehman, S. M., O'gorman, D. T. and Svircev, A. M. 2011. Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Can. J. Plant Pathol. 33:308-317. https://doi.org/10.1080/07060661.2011.588250
- Boyd, R. J., Hildebrandt, A. C. and Allen, O. N. 1971. Retardation of crown gall enlargement after bacteriophage treatment. Plant Dis. Rep. 55:145-148.
- Burnham, S., Hu, J., Anany, H., Brovko, L., Deiss, F., Derda, R. and Griffiths, M. W. 2014. Towards rapid on-site phagemediated detection of generic Escherichia coli in water using luminescent and visual readout. Anal. Bioanal. Chem. 406:5685-5693. https://doi.org/10.1007/s00216-014-7985-3
- Buttimer, C., McAuliffe, O., Ross, R. P., Hill, C., O'Mahony, J. and Coffey, A. 2017. Bacteriophages and bacterial plant diseases. Front. Microbiol. 8:34.
- Calvo-Garrido, C., Vinas, I., Elmer, P. A., Usall, J. and Teixido, N. 2014. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents. Pest Manag. Sci. 70:595-602. https://doi.org/10.1002/ps.3587
- Carisse, O., Philion, V., Rolland, D. and Bernier, J. 2000. Effect of fall application of fungal antagonists on spring ascospore production of the apple scab pathogen, Venturia inaequalis. Phytopathology 90:31-37. https://doi.org/10.1094/PHYTO.2000.90.1.31
- Chae, J.-C., Hung, N. B., Yu, S.-M., Lee, H. K. and Lee, Y. H. 2014. Diversity of bacteriophages infecting Xanthomonas oryzae pv. oryzae in paddy fields and its potential to control bacterial leaf blight of rice. J. Microbiol. Biotechnol. 24:740-747. https://doi.org/10.4014/jmb.1402.02013
- Chopin, M.-C., Chopin, A. and Bidnenko, E. 2005. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8:473-479. https://doi.org/10.1016/j.mib.2005.06.006
- Civerolo, E. L. 1973. Relationship of Xanthomonas pruni bacteriophages to bacterial spot disease in prunus. Phytopathology 63:1279-1284. https://doi.org/10.1094/Phyto-63-1279
- Civerolo, E. L. and Keil, H. L. 1969. Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology 59:1966-1967.
- Coffey, A. and Ross, R. P. 2002. Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application. Antonie Van Leeuwenhoek 82: 303-321. https://doi.org/10.1023/A:1020639717181
- Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71:4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
- Coons, G. H. and Kotila, J. E. 1925. The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology 15:357-370.
- Davies, E. V., Winstanley, C., Fothergill, J. L. and James, C. E. 2016. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol. Lett. 363:fnw015. https://doi.org/10.1093/femsle/fnw015
- Dennis, C. and Webster, J. 1971. Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Trans. Br. Mycol. Soc. 57:25-39. https://doi.org/10.1016/s0007-1536(71)80077-3
- d'Herelle, F. 1917. Sur un microbe invisible antagoniste des Bacillies dysenterique. C. R. Acad. Sci. 165:373-375.
- Dong, S., Shew, H. D., Tredway, L. P., Lu, J., Sivamani, E., Miller, E. S. and Qu, R. 2008. Expression of the bacteriophage T4 lysozyme gene in tall fescue confers resistance to gray leaf spot and brown patch diseases. Transgenic Res. 17:47-57. https://doi.org/10.1007/s11248-007-9073-3
- Dong, Z., Xing, S., Liu, J., Tang, X., Ruan, L., Sun, M., Tong, Y. and Peng, D. 2018. Isolation and characterization of a novel phage Xoo-sp2 that infects Xanthomonas oryzae pv. oryzae. J. Gen. Virol. 99:1453-1462. https://doi.org/10.1099/jgv.0.001133
- Drulis-Kawa, Z., Majkowska-Skrobek, G. and Maciejewska, B. 2015. Bacteriophages and phage-derived proteins: application approaches. Curr. Med. Chem. 22:1757-1773. https://doi.org/10.2174/0929867322666150209152851
- Dy, R. L., Rigano, L. A. and Fineran, P. C. 2018. Phage-based biocontrol strategies and their application in agriculture and aquaculture. Biochem. Soc. Trans. 46:1605-1613. https://doi.org/10.1042/BST20180178
- Elhalag, K., Nasr-Eldin, M., Hussien, A. and Ahmad, A. 2018. Potential use of soilborne lytic Podoviridae phage as a biocontrol agent against Ralstonia solanacearum. J. Basic Microbiol. 58:658-669. https://doi.org/10.1002/jobm.201800039
- Farooq, U., Yang, Q., Ullah, M. W. and Wang, S. 2018. Bacterial biosensing: recent advances in phage-based bioassays and biosensors. Biosens. Bioelectron. 118:204-216. https://doi.org/10.1016/j.bios.2018.07.058
- Flaherty, J. E., Harbaugh, B. K., Jones, J. B., Somodi, G. C. and Jackson, L. E. 2001. H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. HortScience 36:98-100. https://doi.org/10.21273/hortsci.36.1.98
- Flaherty, J. E., Jones, J. B., Harbaugh, B. K., Somodi, G. C. and Jackson, L. E. 2000. Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. HortScience 35:882-884. https://doi.org/10.21273/hortsci.35.5.882
- Flockhart, A. F., Tree, J. J., Xu, X., Karpiyevich, M., McAteer, S. P., Rosenblum, R., Shaw, D. J., Low, C. J., Best, A., Gannon, V., Laing, C., Murphy, K. C., Leong, J. M., Schneiders, T., La Ragione, R. and Gally, D. L. 2012. Identification of a novel prophage regulator in Escherichia coli controlling the expression of type III secretion. Mol. Microbiol. 83:208-223. https://doi.org/10.1111/j.1365-2958.2011.07927.x
-
Forde, A., Daly, C. and Fitzgerald, G. F. 1999. Identification of four phage resistance plasmids from Lactococcus lactis subsp. cremoris
$HO_2$ . Appl. Environ. Microbiol. 65:1540-1547. https://doi.org/10.1128/aem.65.4.1540-1547.1999 - Fortier, L.-C. and Sekulovic, O. 2013. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4:354-365. https://doi.org/10.4161/viru.24498
- Frampton, R. A., Taylor, C., Moreno, A. V. H., Visnovsky, S. B., Petty, N. K., Pitman, A. R. and Fineran, P. C. 2014. Identification of bacteriophages for biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Appl. Environ. Microbiol. 80:2216-2228. https://doi.org/10.1128/AEM.00062-14
- Frobisher, M. Jr. and Brown, J. H. 1927. Transmissible toxicogenicity of streptococci. Bull. Johns Hopkins Hosp. 41:167-173.
- Fujiwara, A., Fujisawa, M., Hamasaki, R., Kawasaki, T., Fujie, M. and Yamada, T. 2011. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl. Environ. Microbiol. 77:4155-4162. https://doi.org/10.1128/AEM.02847-10
-
Gasic, K., Kuzmanovic, N., Ivanovic, M., Prokic, A., Sevic, M. and Obradovic, A. 2018. Complete genome of the Xanthomonas euvesicatoria specific bacteriophage
$K{\Phi}1$ , its survival and potential in control of pepper bacterial spot. Front. Microbiol. 9:2021. https://doi.org/10.3389/fmicb.2018.02021 - Gill, J. and Abedon, S. T. 2003. Bacteriophage ecology and plants. APSnet Features. https://doi.org/10.1094/APSnetFeature-2003-1103.
- Gomez, P. and Buckling, A. 2011. Bacteria-phage antagonistic coevolution in soil. Science 332:106-109. https://doi.org/10.1126/science.1198767
- Goto, M. 2012. Fundamentals of bacterial plant pathology. Academic Press, Burlington, MA, USA. 342 pp.
- Greer, G. G. 2005. Bacteriophage control of foodborne bacteria. J. Food Prot. 68:1102-1111. https://doi.org/10.4315/0362-028X-68.5.1102
- Groman, N. B. 1953. Evidence for the induced nature of the change from nontoxigenicity to toxigenicity in Corynebacterium diphtheriae as a result of exposure to specific bacteriophage. J. Bacteriol. 66:184-191. https://doi.org/10.1128/jb.66.2.184-191.1953
- Groman, N. B. 1955. Evidence for the active role of bacteriophage in the conversion of nontoxigenic Corynebacterium diphtheriae to toxin production. J. Bacteriol. 69:9-15. https://doi.org/10.1128/jb.69.1.9-15.1955
- Hagens, S. and Loessner, M. J. 2007. Application of bacteriophages for detection and control of foodborne pathogens. Appl. Microbiol. Biotechnol. 76:513-519. https://doi.org/10.1007/s00253-007-1031-8
- Hermoso, J. A., Garcia, J. L. and Garcia, P. 2007. Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr. Opin. Microbiol. 10:461-472. https://doi.org/10.1016/j.mib.2007.08.002
- Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. and Sullivan, M. B. 2017. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11:1511-1520. https://doi.org/10.1038/ismej.2017.16
- Hwang, M. S., Morgan, R. L., Sarkar, S. F., Wang, P. W. and Guttman, D. S. 2005. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl. Environ. Microbiol. 71:5182-5191. https://doi.org/10.1128/AEM.71.9.5182-5191.2005
- Ibrahim, Y. E., Saleh, A. A. and Al-Saleh, M. A. 2017. Management of asiatic citrus canker under field conditions in Saudi Arabia using bacteriophages and acibenzolar-S-methyl. Plant Dis. 101:761-765. https://doi.org/10.1094/PDIS-08-16-1213-RE
- Ignoffo, C. M., Garcia, C. and Saathoff, S. G. 1997. Sunlight stability and rain-fastness of formulations of Baculovirus heliothis. Environ. Entomol. 26:1470-1474. https://doi.org/10.1093/ee/26.6.1470
- Iriarte, F. B., Balogh, B., Momol, M. T., Smith, L. M., Wilson, M. and Jones, J. B. 2007. Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl. Environ. Microbiol. 73:1704-1711. https://doi.org/10.1128/AEM.02118-06
- Javed, M. A., Poshtiban, S., Arutyunov, D., Evoy, S. and Szymanski, C. M. 2013. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli. PLoS ONE 8:e69770. https://doi.org/10.1371/journal.pone.0069770
- Koskella, B. and Brockhurst, M. A. 2014. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38:916-931. https://doi.org/10.1111/1574-6976.12072
- Kotila, J. E. and Coons, G. H. 1925. Investigations on the blackleg disease of the potato. Mich. Agric. Exp. Stn. Tech. Bull. 67:3-29.
- Kuo, T. T., Chang, L. C., Yang, C. M. and Yang, S. E. 1971. Bacterial leaf blight of rice plant. IV. Effect of bacteriophage on the infectivity of Xanthomonas oryzae. Acad. Sin. Inst. Bot. Bot. Bull. 12:1-9.
- Kutin, R. K., Alvarez, A. and Jenkins, D. M. 2009. Detection of Ralstonia solanacearum in natural substrates using phage amplification integrated with real-time PCR assay. J. Microbiol. Methods 76:241-246. https://doi.org/10.1016/j.mimet.2008.11.008
- Lai, M.-J., Soo, P.-C., Lin, N.-T., Hu, A., Chen, Y.-J., Chen, L.-K. and Chang, K.-C. 2013. Identification and characterisation of the putative phage-related endolysins through full genome sequence analysis in Acinetobacter baumannii ATCC 17978. Int. J. Antimicrob. Agents 42:141-148. https://doi.org/10.1016/j.ijantimicag.2013.04.022
- Lang, J. M., Gent, D. H. and Schwartz, H. F. 2007. Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Dis. 91:871-878. https://doi.org/10.1094/PDIS-91-7-0871
- Le Roy, E. J. 1989. Bacteriophage prevention and control of harmful plant bacteria. U.S. Patent No. US4828999A. U.S. Patent and Trademark Office, Washington, DC, USA.
- Lee, Y. A., Hendson, M., Panopoulos, N. J. and Schroth, M. N. 1994. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. J. Bacteriol. 176:173-188. https://doi.org/10.1128/jb.176.1.173-188.1994
- Leverentz, B., Conway, W. S., Camp, M. J., Janisiewicz, W. J., Abuladze, T., Yang, M., Saftner, R. and Sulakvelidze, A. 2003. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl. Environ. Microbiol. 69:4519-4526. https://doi.org/10.1128/AEM.69.8.4519-4526.2003
- Lim, J.-A., Jee, S., Lee, D. H., Roh, E., Jung, K., Oh, C. and Heu, S. 2013. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. J. Microbiol. Biotechnol. 23:1147-1153. https://doi.org/10.4014/jmb.1304.04001
- Loc-Carrillo, C. and Abedon, S. T. 2011. Pros and cons of phage therapy. Bacteriophage 1:111-114. https://doi.org/10.4161/bact.1.2.14590
- Lood, R., Winer, B. Y., Pelzek, A. J., Diez-Martinez, R., Thandar, M., Euler, C. W., Schuch, R. and Fischetti, V. A. 2015. Novel phage lysin capable of killing the multidrug-resistant gramnegative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob. Agents Chemother. 59:1983-1991. https://doi.org/10.1128/AAC.04641-14
- Mallmann, W. L. and Hemstreet, C. 1924. Isolation of an inhibitory substance from plants. J. Agric. Res. 28:599-602.
- Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G. and Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
- Manulis, S., Kleitman, F., Dror, O. and Shabi, E. 2000. Isolation of strains of Erwinia amylovora resistant to oxolinic acid. IOBC/WPRS Bull. 23:89-92.
- Masami, N., Masao, G., Katsumi, A. and Tadaaki, H. 2004. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. actinidiae. Eur. J. Plant Pathol. 110:223-226. https://doi.org/10.1023/b:ejpp.0000015360.88352.a9
- McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443-465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
- Mellano, M. A. and Cooksey, D. A. 1988. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J. Bacteriol. 170:2879-2883. https://doi.org/10.1128/jb.170.6.2879-2883.1988
- Morgan, A. D., Bonsall, M. B. and Buckling, A. 2010. Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages. Evolution 64:2980-2987.
- Nagai, H., Miyake, N., Kato, S., Maekawa, D., Inoue, Y. and Takikawa, Y. 2017. Improved control of black rot of broccoli caused by Xanthomonas campestris pv. campestris using a bacteriophage and a nonpathogenic Xanthomonas sp. strain. J. Gen. Plant Pathol. 83:373-381. https://doi.org/10.1007/s10327-017-0745-4
- Nanda, A. M., Thormann, K. and Frunzke, J. 2015. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J. Bacteriol. 197:410-419. https://doi.org/10.1128/JB.02230-14
- Nelson, D. C., Schmelcher, M., Rodriguez-Rubio, L., Klumpp, J., Pritchard, D. G., Dong, S. and Donovan, D. M. 2012. Endolysins as antimicrobials. Adv. Virus Res. 83:299-365. https://doi.org/10.1016/B978-0-12-394438-2.00007-4
- Obradovic, A., Jones, J. B., Momol, M. T., Olson, S. M., Jackson, L. E., Balogh, B., Guven, K. and Iriarte, F. B. 2005. Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis. 89:712-716. https://doi.org/10.1094/PD-89-0712
- Okabe, N. and Goto, M. 1963. Bacteriophages of plant pathogens. Annu. Rev. Phytopathol. 1:397-418. https://doi.org/10.1146/annurev.py.01.090163.002145
- Pohane, A. A. and Jain, V. 2015. Insights into the regulation of bacteriophage endolysin: multiple means to the same end. Microbiology 161:2269-2276. https://doi.org/10.1099/mic.0.000190
- Rahimi-Midani, A., Lee, Y. S., Kang, S.-W., Kim, M.-K. and Choi, T.-J. 2018. First isolation and molecular characterization of bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch. Plant Pathol. J. 34:59-64. https://doi.org/10.5423/PPJ.NT.08.2017.0190
- Ramirez, M., Neuman, B. and Ramirez, C. A. 2020. Bacteriophages as promising agents for the biological control of moko disease (Ralstonia solanacearum) of banana. Biol. Control. (in press). https://doi.org/10.1016/j.biocontrol.2020.104238.
- Ranjani, P., Gowthami, Y., Gnanamanickam, S. S. and Palani, P. 2018. Bacteriophages: a new weapon for the control of bacterial blight disease in rice caused by Xanthomonas oryzae. Microbiol. Biotechnol. Lett. 46:346-359. https://doi.org/10.4014/mbl.1807.07009
- Rezzonico, F., Smits, T. H. and Duffy, B. 2011. Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora. Appl. Environ. Microbiol. 77:3819-3829. https://doi.org/10.1128/AEM.00177-11
- Rombouts, S., Volckaert, A., Venneman, S., Declercq, B., Vandenheuvel, D., Allonsius, C. N., Van Malderghem, C., Jang, H. B., Briers, Y., Noben, J. P., Klumpp, J., Van Vaerenbergh, J., Maes, M. and Lavigne, R. 2016. Characterization of novel bacteriophages for biocontrol of bacterial blight in leek caused by Pseudomonas syringae pv. porri. Front. Microbiol. 7:279.
- Russel, M., Linderoth, N. A. and Sali, A. 1997. Filamentous phage assembly: variation on a protein export theme. Gene 192:23-32. https://doi.org/10.1016/S0378-1119(96)00801-3
- Saccardi, A., Gambin, E., Zaccardelli, M., Barone, G. and Mazzucchi, U. 1993. Xanthomonas campestris pv. pruni control trials with phage treatments on peaches in the orchard. Phytopathol. Mediterr. 32:206-210.
- Santos, S. B., Costa, A. R., Carvalho, C., Nobrega, F. L. and Azeredo, J. 2018. Exploiting bacteriophage proteomes: the hidden biotechnological potential. Trends Biotechnol. 36:966-984. https://doi.org/10.1016/j.tibtech.2018.04.006
- Schmerer, M., Molineux, I. J. and Bull, J. J. 2014. Synergy as a rationale for phage therapy using phage cocktails. PeerJ 2:e590. https://doi.org/10.7717/peerj.590
- Schnabel, E. L., Fernando, W. G. D., Meyer, M. P., Jones, A. L. and Jackson, L. E. 1998. Bacteriophage of Erwinia amylovora and their potential for biocontrol. Acta Hortic. 489:649-654. https://doi.org/10.17660/actahortic.1999.489.116
- Schofield, D. A., Bull, C. T., Rubio, I., Wechter, W. P., Westwater, C. and Molineux, I. J. 2013. "Light-tagged" bacteriophage as a diagnostic tool for the detection of phytopathogens. Bioengineered 4:50-54. https://doi.org/10.4161/bioe.22159
- Semenova, E., Nagornykh, M., Pyatnitskiy, M., Artamonova, I. I. and Severinov, K. 2009. Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol. Lett. 296:110-116. https://doi.org/10.1111/j.1574-6968.2009.01626.x
- Singh, A., Arutyunov, D., Szymanski, C. M. and Evoy, S. 2012. Bacteriophage based probes for pathogen detection. Analyst 137:3405-3421. https://doi.org/10.1039/c2an35371g
- Stall, R. E. 1962. Streptomycin resistance of the bacterial spot pathogen and control with streptomycin. Plant Dis. Rep. 46:389-392.
- Stonier, T., McSharry, J. and Speitel, T. 1967. Agrobacterium tumefaciens Conn IV. Bacteriophage PB21 and its inhibitory effect on tumor induction. J. Virol. 1:268-273. https://doi.org/10.1128/jvi.1.2.268-273.1967
- Sulakvelidze, A., Alavidze, Z. and Morris, J. G. Jr. 2001. Bacteriophage therapy. Antimicrob. Agent Chemother. 45:649-659. https://doi.org/10.1128/AAC.45.3.649-659.2001
- Sutton, M. D. and Katznelson, H. 1953. Isolation of bacteriophages for the detection and identification of some seedborne pathogenic bacteria. Can. J. Bot. 31:201-205. https://doi.org/10.1139/b53-019
- Svircev, A., Roach, D. and Castle, A. 2018. Framing the future with bacteriophages in agriculture. Viruses 10:E218.
- Tanaka, H., Negishi, H. and Maeda, H. 1990. Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Ann. Phytopathol. Soc. Jpn. 56:243-246. https://doi.org/10.3186/jjphytopath.56.243
- Tewfike, T. A. and Desoky, S. M. 2015. Biocontrol of Xanthomonas axonopodis causing bacterial spot by application of formulated phage. Ann. Agric. Sci. Moshtohor. 53:615-624. https://doi.org/10.21608/assjm.2015.109939
- Thomas, R. 1935. A bacteriophage in relation to Stewart's disease of corn. Phytopathology 25:371-372.
- Twort, F. W. 1915. An Investigation on the nature of ultra-microscopic viruses. Lancet 186:1241-1243. https://doi.org/10.1016/S0140-6736(01)20383-3
- Wang, X., Wei, Z., Yang, K., Wang, J., Jousset, A., Xu, Y., Shen, Q. and Friman, V.-P. 2019. Phage combination therapies for bacterial wilt disease in tomato. Nat. Biotechnol. 37:1513-1520. https://doi.org/10.1038/s41587-019-0328-3
- Weber-Dabrowska, B., Mulczyk, M. and Gorski, A. 2001. Bacteriophage therapy for infections in cancer patients. Clin. Appl. Immunol. Rev. 1:131-134. https://doi.org/10.1016/S1529-1049(01)00015-0
- Wei, C., Liu, J., Maina, A. N., Mwaura, F. B., Yu, J., Yan, C., Zhang, R. and Wei, H. 2017. Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt. Virol. Sin. 32:476-484. https://doi.org/10.1007/s12250-017-3987-6
- Weinbauer, M. G. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28:127-181. https://doi.org/10.1016/j.femsre.2003.08.001
- Weng, S.-F., Fu, Y.-C., Lin, J.-W. and Tseng, T.-T. 2018. Identification of a broad-spectrum peptidoglycan hydrolase associated with the particle of Xanthomonas oryzae phage Xop411. J. Mol. Microbiol. Biotechnol. 28:78-86. https://doi.org/10.1159/000488678
- Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J. and Hein, I. 2014. Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Front. Plant Sci. 5:655.
- Wilhelm, S. W. and Suttle, C. A. 1999. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49:781-788. https://doi.org/10.2307/1313569
- Wittmann, J., Brancato, C., Berendzen, K. W. and Dreiseikelmann, B. 2016. Development of a tomato plant resistant to Clavibacter michiganensis using the endolysin gene of bacteriophage CMP1 as a transgene. Plant Pathol. 65:496-502. https://doi.org/10.1111/ppa.12417
- Wittmann, J., Eichenlaub, R. and Dreiseikelmann, B. 2010. The endolysins of bacteriophages CMP1 and CN77 are specific for the lysis of Clavibacter michiganensis strains. Microbiology 156:2366-2373. https://doi.org/10.1099/mic.0.037291-0
- Yin, Y., Ni, P., Deng, B., Wang, S., Xu, W. and Wang, D. 2019. Isolation and characterisation of phages against Pseudomonas syringae pv. actinidiae. Acta. Agric. Sect. B Soil Plant Sci. 69:199-208.
- Yu, J.-G., Lim, J.-A., Song, Y.-R., Heu, S., Kim, G. H., Koh, Y. J. and Oh, C.-S. 2016. Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. J. Microbiol. Biotechnol. 26:385-393. https://doi.org/10.4014/jmb.1509.09012
- Zaczek-Moczydlowska, M. A., Young, G. K., Trudgett, J., Fleming, C. C., Campbell, K. and O'Hanlon, R. 2020. Genomic characterization, formulation and efficacy in planta of a Siphoviridae and Podoviridae protection cocktail against the bacterial plant pathogens Pectobacterium spp. Viruses 12:150. https://doi.org/10.3390/v12020150