참고문헌
- Agrios, G. N. 2005. Plant pathology. 5th ed. Elsevier Academic Press, Amsterdam, The Netherlands. 952 pp.
- Ameztoy, K., Baslam, M., Sanchez-Lopez, A. M., Munoz, F. J., Bahaji, A., Almagro, G., Garcia-Gomez, P., Baroja-Fernandez, E., De Diego, N., Humplik, J. F., Ugena, L., Spichal, L., Dolezal, K., Kaneko, K., Mitsui, T., Cejudo, F. J. and Pozueta-Romero, J. 2019. Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis. Plant Cell Environ. 42:2627-2644. https://doi.org/10.1111/pce.13601
- Baldrian, P. and Valaskova, V. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32:501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x
-
Barrero, A. F., Oltra, J. E., Herrador, M. M., Cabrera, E., Sanchez, J. F., Quilez, J. F., Rojas, F. J. and Reyes, J. F. 1993. Gibepyrones:
$\alpha$ -pyrones from Gibberella fujikuroi. Tetrahedron 49:141-150. https://doi.org/10.1016/S0040-4020(01)80514-7 - Bitas, V., McCartney, N., Li, N., Demers, J., Kim, J. E., Kim, H. S., Brown, K. M. and Kang, S. 2015. Fusarium Oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Front. Microbiol. 6:1248.
- Chen, J. L., Sun, S. Z., Miao, C. P., Wu, K., Chen, Y. W., Xu, L. H., Guan, H. L. and Zhao, L. X. 2016. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J. Ginseng Res. 40:315-324. https://doi.org/10.1016/j.jgr.2015.09.006
- Clegg, C. J. and Mackean, D. G. 2000. Advanced biology: principles and applications. 2nd ed. John Murray, London, UK. 720 pp.
- Cordovez, V., Mommer, L., Moisan, K., Lucas-Barbosa, D., Pierik, R., Mumm, R., Carrion, V. J. and Raaijmakers, J. M. 2017. Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. Front. Plant Sci. 8:1262. https://doi.org/10.3389/fpls.2017.01262
- Das, A., Lee, S.-H., Hyun, T. K., Kim, S.-W. and Kim, J.-Y. 2013. Plant volatiles as method of communication. Plant Biotechnol. Rep. 7:9-26. https://doi.org/10.1007/s11816-012-0236-1
- De Vega, C., Herrera, C. M. and Dotterl, S. 2014. Floral volatiles play a key role in specialized ant pollination. Perspect. Plant Ecol. Evol. Syst. 16:32-42. https://doi.org/10.1016/j.ppees.2013.11.002
- Dinis, M. J., Bezerra, R. M., Nunes, F., Dias, A. A., Guedes, C. V., Ferreira, L. M. M., Cone, J. W., Marques, G. S. M., Barros, A. R. N. and Rodrigues, M. A. M. 2009. Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour. Technol. 100:4829-4835. https://doi.org/10.1016/j.biortech.2009.04.036
- Ditengou, F. A., Muller, A., Rosenkranz, M., Felten, J., Lasok, H., van Doorn, M. M., Legue, V., Palme, K., Schnitzler, J.-P. and Polle, A. 2015. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat. Commun. 6:6279. https://doi.org/10.1038/ncomms7279
- Ezra, D., Hess, W. M. and Strobel, G. A. 2004. New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150:4023-4031. https://doi.org/10.1099/mic.0.27334-0
- Felten, J., Kohler, A., Morin, E., Bhalerao, R. P., Palme, K., Martin, F., Ditengou, F. A. and Legue, V. 2009. The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol. 151:1991-2005. https://doi.org/10.1104/pp.109.147231
- Fialho, M. B., Toffano, L., Pedroso, M. P., Augusto, F. and Pascholati, S. F. 2010. Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World J. Microbiol. Biotechnol. 26:925-932. https://doi.org/10.1007/s11274-009-0255-4
- Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torres, M. A., Linstead, P., Costa, S., Brownlee, C., Jones, J. D. G., Davies, J. M. and Dolan, L. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442-446. https://doi.org/10.1038/nature01485
- Fox, E. M. and Howlett, B. J. 2008. Secondary metabolism: regulation and role in fungal biology. Curr. Opin. Microbiol. 11:481-487. https://doi.org/10.1016/j.mib.2008.10.007
- Garbeva, P., Hordijk, C., Gerards, S. and de Boer, W. 2014. Volatile-mediated interactions between phylogenetically different soil bacteria. Front. Microbiol. 5:289. https://doi.org/10.3389/fmicb.2014.00289
- Garnica-Vergara, A., Barrera-Ortiz, S., Munoz-Parra, E., Raya-Gonzalez, J., Mendez-Bravo, A., Macias-Rodriguez, L., Ruiz-Herrera, L. F. and Lopez-Bucio, J. 2016. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 209:1496-1512. https://doi.org/10.1111/nph.13725
- Gomes, A. A., Pinho, D. B., Cardeal, Z. L., Menezes, H. C., De Queiroz, M. V. and Pereira, O. L. 2018. Simplicillium coffeanum, a new endophytic species from Brazilian coffee plants, emitting antimicrobial volatiles. Phytotaxa 333:188-198. https://doi.org/10.11646/phytotaxa.333.2.2
- Hobbie, E. A., Macko, S. A. and Shugart, H. H. 1999. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118:353-360. https://doi.org/10.1007/s004420050736
- Holopainen, J. K. and Blande, J. D. 2012. Molecular plant volatile communication. In: Sensing in nature, ed. by C. Lopez-Larrea, pp. 17-31. Springer-Verlag, New York, USA.
- Hung, R., Lee, S. and Bennett, J. W. 2013. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol. 6:19-26. https://doi.org/10.1016/j.funeco.2012.09.005
- Hung, R., Lee, S. and Bennett, J. W. 2015. Fungal volatile organic compounds and their role in ecosystems. Appl. Microbiol. Biotechnol. 99:3395-3405. https://doi.org/10.1007/s00253-015-6494-4
- Jalali, F., Zafari, D. and Salari, H. 2017. Volatile organic compounds of some Trichoderma spp. increase growth and induce salt tolerance in Arabidopsis thaliana. Fungal Ecol. 29:67-75. https://doi.org/10.1016/j.funeco.2017.06.007
- Kaddes, A., Fauconnier, M. L., Sassi, K., Nasraoui, B. and Jijakli, M. H. 2019. Endophytic fungal volatile compounds as solution for sustainable agriculture. Molecules 24:1065. https://doi.org/10.3390/molecules24061065
- Kai, M., Effmert, U. and Piechulla, B. 2016. Bacterial-plantinteractions: approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Front. Microbiol. 7:108.
- Kanchiswamy, C. N., Malnoy, M. and Maffei, M. E. 2015. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 6:151. https://doi.org/10.3389/fpls.2015.00151
- Kottb, M., Gigolashvili, T., Grosskinsky, D. K. and Piechulla, B. 2015. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Front. Microbiol. 6:995. https://doi.org/10.3389/fmicb.2015.00995
- Kudalkar, P., Strobel, G., Riyaz-Ul-Hassan, S., Geary, B. and Sears, J. 2012. Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53:319-325. https://doi.org/10.1007/s10267-011-0165-9
- Lee, S. O., Kim, H. Y., Choi, G. J., Lee, H. B., Jang, K. S., Choi, Y. H. and Kim, J.-C. 2009. Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J. Appl. Microbiol. 106:1213-1219. https://doi.org/10.1111/j.1365-2672.2008.04087.x
- Lee, S., Yap, M., Behringer, G., Hung, R. and Bennett, J. W. 2016. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 3:7. https://doi.org/10.1186/s40694-016-0025-7
- Li, N. and Kang, S. 2018. Do volatile compounds produced by Fusarium oxysporum and Verticillium dahliae affect stress tolerance in plants? Mycology 9:166-175. https://doi.org/10.1080/21501203.2018.1448009
- Li, Z. T., Janisiewicz, W. J., Liu, Z., Callahan, A. M., Evans, B. E., Jurick, W. M. and Dardick, C. 2019. Exposure in vitro to an environmentally isolated strain TC09 of Cladosporium sphaerospermum triggers plant growth promotion, early flowering, and fruit yield increase. Front. Plant Sci. 9:1959. https://doi.org/10.3389/fpls.2018.01959
- McMillan, J. D. and Boynton, B. L. 1994. Arbinose utilization by xylose-fermenting yeasts and fungi. Appl. Biochem. Biotech. 45:569-584. https://doi.org/10.1007/BF02941831
- Mercier, J., Jimenez-Santamaria, J. I. and Tamez-Guerra, P. 2007. Development of the volatile-producing fungus Muscodor albus worapong, Strobel, and Hess as a novel antimicrobial biofumigantRev. Mex. Fitopatol. 25:173-179.
- Meshram, V., Kapoor, N. and Saxena, S. 2013. Muscodor kashayum sp. nov.: a new volatile anti-microbial producing endophytic fungus. Mycology 4:196-204. https://doi.org/10.1080/21501203.2013.877990
- Mishra, P., Singh, S. K. and Nilegaonkar, S. S. 2011. Extracellular chitinase production by some members of the saprophytic Entomophthorales group. Mycoscience 52:271-277. https://doi.org/10.1007/s10267-010-0090-3
- Morath, S. U., Hung, R. and Bennett, J. W. 2012. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol. Rev. 26:73-83. https://doi.org/10.1016/j.fbr.2012.07.001
- Naznin, H. A., Kimura, M., Miyazawa, M. and Hyakumachi, M. 2013. Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes Environ. 28:42-49. https://doi.org/10.1264/jsme2.ME12085
- Naznin, H. A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M. and Hyakumachi, M. 2014. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS ONE 9:e86882. https://doi.org/10.1371/journal.pone.0086882
- Nicolotti, G. and Varese, G. C.1996. Screening of antagonistic fungi against air-borne infection by Heterobasidion annosum on Norway spruce. Forest Ecol. Manage. 88:249-257. https://doi.org/10.1016/S0378-1127(96)03844-3
- Overvoorde, P., Fukaki, H. and Beeckman, T. 2010. Auxin control of root development. Cold Spring Harb. Perspect. Biol. 2:a001537. https://doi.org/10.1101/cshperspect.a001537
- Paul, D. and Park, K. S. 2013. Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors 13:13969-13977. https://doi.org/10.3390/s131013969
- Pichersky, E., Noel, J. P. and Dudareva, N. 2006. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science 311:808-811. https://doi.org/10.1126/science.1118510
- Richard, F.-J. and Hunt, J. H. 2013. Intracolony chemical communication in social insects. Insect. Soc. 60:275-291. https://doi.org/10.1007/s00040-013-0306-6
- Rodriguez, R. J., White, J. F. Jr., Arnold, A. E. and Redman, R. S. 2009. Fungal endophytes: diversity and functional roles. New Phytol. 182:314-330. https://doi.org/10.1111/j.1469-8137.2009.02773.x
- Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026. https://doi.org/10.1104/pp.103.026583
- Saini, S., Sharma, I., Kaur, N. and Pati, P. K. 2013. Auxin: a master regulator in plant root development. Plant Cell Rep. 32:741-757. https://doi.org/10.1007/s00299-013-1430-5
- Sanchez-Ortiz, B. L., Sanchez-Fernandez, R. E., Duarte, G., Lappe-Oliveras, P. and Macias-Rubalcava, M. L. 2016. Antifungal, anti-oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB3f3 isolated from Haematoxylon brasiletto. J. Appl. Microbiol.120:1313-1325. https://doi.org/10.1111/jam.13101
- Schalchli, H., Tortella, G. R., Rubilar, O., Parra, L., Hormazabal, E. and Quiroz, A. 2016. Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit. Rev. Biotechnol. 36:144-152. https://doi.org/10.3109/07388551.2014.946466
- Schardl, C. L., Leuchtmann, A. and Spiering, M. J. 2004. Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 55:315-340. https://doi.org/10.1146/annurev.arplant.55.031903.141735
- Schausberger, P., Peneder, S., Jurschik, S. and Hoffmann, D. 2012. Mycorrhiza changes plant volatiles to attract spider mite enemies. Funct. Ecol. 26:441-449. https://doi.org/10.1111/j.1365-2435.2011.01947.x
- Schmidt, R., Cordovez, V., de Boer, W., Raaijmakers, J. and Garbeva, P. 2015. Volatile affairs in microbial interactions. ISME J. 9:2329-2335. https://doi.org/10.1038/ismej.2015.42
- Schmidt, R., Etalo, D. W., de Jager, V., Gerards, S., Zweers, H., de Boer, W. and Garbeva, P. 2016. Microbial small talk: volatiles in fungal-bacterial interactions. Front. Microbiol. 6:1495.
- Schmidt, R., Jager, V., Zuhlke, D., Wolff, C., Bernhardt, J., Cankar, K., Beekwilder, J., Ijcken, W. V., Sleutels, F., Boer, W., Riedel, K. and Garbeva, P. 2017. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci. Rep. 7:862. https://doi.org/10.1038/s41598-017-00893-3
- Splivallo, R., Fischer, U., Gobel, C., Feussner, I. and Karlovsky, P. 2009. Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol. 150:2018-2029. https://doi.org/10.1104/pp.109.141325
- Splivallo, R., Novero, M., Bertea, C. M., Bossi, S. and Bonfante, P. 2007. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. 175:417-424. https://doi.org/10.1111/j.1469-8137.2007.02141.x
- Spraker, J. E., Jewell, K., Roze, L. V., Scherf, J., Ndagano, D., Beaudry, R., Linz, J. E., Allen, C. and Keller, N. P. 2014. A volatile relationship: profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia Solanacearum and Aspergillus Flavus. J. Chem. Ecol. 40:502-513. https://doi.org/10.1007/s10886-014-0432-2
- Stinson, A. M., Zidack, N. K., Strobel, G. A. and Jacobsen, B. J. 2003a. Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Dis. 87:1349-1354. https://doi.org/10.1094/PDIS.2003.87.11.1349
- Stinson, M., Ezra, D., Hess, W. M., Sears, J. and Strobel, G. 2003b. An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci.165:913-922. https://doi.org/10.1016/S0168-9452(03)00299-1
- Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R. and Schuhmacher, R. 2010. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J. Microbiol. Methods 81:187-193. https://doi.org/10.1016/j.mimet.2010.03.011
- Streiblova, E., Gryndlerova, H. and Gryndler, M. 2012. Truffle brule: an efficient fungal life strategy. FEMS Microbiol. Ecol. 80:1-8. https://doi.org/10.1111/j.1574-6941.2011.01283.x
- Strobel, G. 2006. Harnessing endophytes for industrial microbiology. Curr. Opin. Microbiol. 9:240-244. https://doi.org/10.1016/j.mib.2006.04.001
- Strobel, G. A., Dirkse, E., Sears, J. and Markworth, C. 2001. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943-2950. https://doi.org/10.1099/00221287-147-11-2943
- Strobel, G., Manker, D. C. and Mercier, J. 2005. Endophytic fungi and methods of use. U.S. Patent No. US 6,911,338 B2. U.S. Patent and Trademark Office, Washington, DC, USA.
- Sun, X.-G., Bonfante, P. and Tang, M. 2015. Effect of volatiles versus exudates released by germinating spores of Gigaspora margarita on lateral root formation. Plant Physiol. Biochem. 97:1-10. https://doi.org/10.1016/j.plaphy.2015.09.010
- Suwannarach, N., Bussaban, B., Nuangmek, W., Pithakpol, W., Jirawattanakul, B., Matsui, K. and Lumyong, S. 2016. Evaluation of Muscodor suthepensis strain CMU-Cib462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum. J. Sci. Food Agric. 96:339-345. https://doi.org/10.1002/jsfa.7099
- Ueda, H., Kikuta, Y. and Matsuda, K. 2012. Plant communication: mediated by individual or blended VOCs? Plant Signal. Behav. 7:222-226. https://doi.org/10.4161/psb.18765
- Ulloa-Benitez, A., Medina-Romero, Y. M., Sanchez-Fernandez, R. E., Lappe-Oliveras, P., Roque-Flores, G., Duarte Lisci, G., Herrera Suarez, T. and Macias-Rubalcava, M. L. 2016. Phytotoxic and antimicrobial activity of volatile and semivolatile organic compounds from the endophyte Hypoxylon anthochroum strain Blaci isolated from Bursera lancifolia (Burseraceae). J. Appl. Microbiol.121:380-400. https://doi.org/10.1111/jam.13174
- Vashishta, B. R., Sinha, A. K. and Kumar, A. 2016. Botany for degree students: fungi. Rev. ed. S. Chand and Company, New Delhi, India. 794 pp.
- Vespermann, A., Kai, M. and Piechulla, B. 2007. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 73:5639-5641. https://doi.org/10.1128/AEM.01078-07
- Wenke, K., Kai, M. and Piechulla, B. 2010. Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499-506. https://doi.org/10.1007/s00425-009-1076-2
- Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G. and Lorito, M. 2014. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 8:71-126. https://doi.org/10.2174/1874437001408010071
-
Yamagiwa, Y., Inagaki, Y., Ichinose, Y., Toyoda, K., Hyakumachi, M. and Shiraishi, T. 2011. Talaromyces wortmannii FS2 emits
$\beta$ -caryphyllene, which promotes plant growth and induces resistance. J. Gen. Plant Pathol. 77:336-341. https://doi.org/10.1007/s10327-011-0340-z