DOI QR코드

DOI QR Code

EFDC를 이용한 영산강 주요 오염 부하 저감에 따른 승촌보 및 죽산보 녹조 현상 개선 효과 분석

Effect of major pollution sources on algal blooms in the Seungchon weir and Juksan weir in the Yeongsan River using EFDC

  • Kim, Jinsoo (Department of Environmental Engineering, Chungnam National University) ;
  • Kim, Jaeyoung (Department of Environmental Engineering, Chungnam National University) ;
  • Seo, Dongil (Department of Environmental Engineering, Chungnam National University)
  • 투고 : 2020.03.16
  • 심사 : 2020.03.30
  • 발행 : 2020.05.31

초록

본 연구에서는 영산강의 송촌보와 죽산보의 녹조현상에 영향을 미치는 주요 인자들을 분석하고 3차원 수리동역학 EFDC 모델을 이용하여 유역의 점오염원 및 비점오염원의 영향을 분석하여 수질 개선을 위한 관리 우선순위를 선정하고자 하였다. 8개의 주요 지류와 2개의 하수처리장의 2018-2019년의 2년 간 수질 변화특성 분석하였으며 간헐적으로 다량의 비점오염물질이 유입되는 것으로 추정되는 영산강 유역 농경지의 배수문 등 비점오염원은 실측자료의 부족으로 정확한 분석이 어려웠다. EFDC 모델은 수위 및 수질에 대하여 각 6개 지점에 대해서 2018-2019년의 2년간 자료에 대하여 보정하였으며 각 오염원을 중심으로 시나리오를 분석하였다. 광주 제 1 하수처리장의 방류수는 현재의 수질을 75%까지 개선하여도, 승촌보 및 죽산보의 녹조현상이 개선되지 않는 것으로 나타났으며 이는 방류수 수질이 개선되어도 영산강 유역 조류가 성장하기에 충분한 영양염류가 존재한다는 것을 의미한다. 시나리오 분석을 통해 승촌보의 수질에는 황룡강이 가장 큰 영향을 미치며 죽산보의 수질에는 지석천의 영향이 가장 크고 이어서 황룡강의 영향이 큰 것으로 분석되었다. 따라서 승촌보의 수질 개선을 위해서는 황룡강의 수질 개선이 가장 중요한 것으로 분석되며 죽산보는 수질에 가장 큰 영향을 미치는 지석천의 수질 개선이 중요한 것으로 판단된다. 기타 소규모 비점오염부하 유입원에 대하여는 실측자료의 부재로 적절한 분석이 어려웠으며 향후 연구에 보완되어야 할 것으로 판단된다.

In this paper, observed water quality, algal blooms and flow rates in the Yeongsan River and its boundaries including 8 tributaries and 2 wastewater treatment plants for two years of 2018-2019 were analyzed. It seems effects of non-point source load inputs from basin areas to the river may be significant though the field data availability was limited. The EFDC model was calibrated against data collected from 6 water level monitoring stations and 6 water quality monitoring stations, respectively, in the study area. Water quality improvement scenarios were developed assuming 50% and 75% reductions of major pollution sources including treatment plants and tributaries. The developed scenarios were applied to the EFDC model to estimate effects on algal bloom occurrences in the Seungchon weir and Juksan weir. Improvement of the effluent of Gwangju 1 WWTP by 75% did not show any effect on algal blooms for two weir locations. The major tributary affecting algal blooms in the Seungchon weir was the Hwangryong River. The Jisuk stream was found as the most important tributary for the Juksan weir followed by the effect of the Hwangryong River. Though it seems other scattered small nonpoint source load input to the Yeongsan river also seem to be important, it was not possible to reflect their effects appropriately due to field data availability.

키워드

참고문헌

  1. Cha, S.M., Ki, S.J., Cho, K.H., Choi, H., and Kim, J.H. (2009). "Effect of environmental flow management on river water quality: a case study at Yeongsan River." Water Science and Technology, IWA Publishing, Korea, Vol. 59, No. 12, pp. 2437-2446. https://doi.org/10.2166/wst.2009.257
  2. Choi, H.G., Kim, D.I., Na, C.H., and Han, K.Y. (2012). "Assessment of EFDC model for water quality analysis in Nakdong river." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 7, pp. 685-696. https://doi.org/10.3741/JKWRA.2012.45.7.685
  3. Ha, D.W., Shim, H., Kim, H., Kim, Y., Cho, S., Song, C.S., Kang, T.G., and Kim, Y.S. (2018). "A study on the assessment of pollution loads at small stream in Yeongsan River watershed." Journal of Korean Society on Water Environment, KSWE, Vol. 34, No. 1, pp. 1-9. https://doi.org/10.15681/KSWE.2017.34.1.1
  4. Hamrick, J.M. (1992). A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects. Special Report, The College of William and Mary, Virginia Institute of Marine Science, pp. 1-317.
  5. Jeong, D.H., Lee, W.S., Chung, H.M., Park, J.H., Choi, I.C., Park, S.M., Cho, Y.S., Ju, B.G., Kim, E.S., Kim, C.S., Park, J.W., Yang, M.H., Son, B.Y., and Lee, Y.N. (2017). A study on the optimization for TOC water quality management of public sewage treatment works (II). Korea National Institute of Environmental Research, pp. 1-60.
  6. Jin, Y.H., and Park, S.C. (2006). "Study on the discharge characteristics of non-point pollutant source in the urban area of the Yeongsan-River basin." Journal of Korean Society on Water Environment, KSWE, Vol. 22, No. 4, pp. 605-613.
  7. Jung, B.H (2019). To improve the water quality of the Yeongsan River, it is urgent to expand the Gwangju Waste Water Treatment Plant, accessed 30 March 2020, .
  8. Jung, S., Kim, K., Seo, D., Kim, J., and Lim, B. (2013). "Evaluation of water quality characteristics and grade classification of Yeongsan river tributaries." Journal of Korean Society on Water Environment, KSWE, Vol. 29, No. 4, pp. 504-513.
  9. Kang, T.W., Lee, H.J., Song, S.H., Park, S.J., Kim, S.D., Park, J.W., Yoo, S.W., Kim, Y.S., Jung, J.W., Lee, K.H., Im, S.S., Lee, Y.H., Hwang, T.H., Kim, D.Y., Cho, S.H., Na, J.E., Seo, K.A., Hwang, E.J., Lim, H.J., Choi, J.H., Cho, K.H., Pyo, J.C., Park, J.H., and Jeong, S.U. (2014). A study on the change of environmental conditions in Yeongsan River basin (II). Korea National Institute of Environmental Research, pp. 1-30.
  10. Kim, J.S. (2011). Application on TMDLs for water purification in Yeongsan River. Ph. D. dissertation, The Mokpo National University, pp. 13-35.
  11. Kim, J.W. (2019). Prediction of Yeungsan River water quality using EFDC. Master thesis, The Mokpo National University, pp. 1-46.
  12. Kim, J.Y., Lee, T.E,, and Seo, D.I. (2017). "Algal bloom prediction of the lower Han River, Korea using the EFDC hydrodynamic and water quality model." Ecological Modelling, Elsevier Science B.V, Vol. 366, pp. 27-36. https://doi.org/10.1016/j.ecolmodel.2017.10.015
  13. Lee, G.Y. (2020). Water quality improvement effect of Yeongsan River using EFDC model. M. S. dissertation, The Chonnam National University, pp. 7-11.
  14. Ministry of Land, Infrastructure and Transport Korea (MOLIT) (2009). Yeongsan River baseline plan report. pp. 437-451.
  15. Park, K., Kuo, A.Y., Shen, J., and Hamrick, J.M. (1995). A threedimensional hydrodynamic-eutrophication model (HEM-3D): Description of water quality and sediment process submodels. Special Report, Marine Science and Ocean Engineering, pp. 1-327.
  16. Park, S.C., Cho, K.A., Kang, K.W., Gwak, P.J., and Kim, J.S. (2016). "Effect of water quality improvement due to reduction rates of sewage treatment facility in Gwangju." Institute coastal environmental research, Vol. 16, No. 7, pp. 47-60.
  17. Park. S.Y. (2017). Algal blooming characteristic and best management practices Yeongsan River considering pllutant load from tributaries. Korea Water Resources Corporation, pp. 2-95.
  18. Seo, I.J. (2010). Investigation of water quality in upstream regions of Yeongsan River and study on its improvement. Master thesis, The Chonnam National University, pp. 15-60.
  19. Shin, C.M., Kim, D.R., and Song, Y.S. (2019). "Analysis of hydraulic characteristics of Yeongsan River and estuary using EFDC model." Journal of Korean Society on Water Environment, KWRA, Vol. 35, No. 6, pp. 580-588. https://doi.org/10.15681/KSWE.2019.35.6.580
  20. Shin, C.M., Min, J.H., Park, S.Y., Choi, J., Park, J.H., Song, Y.S., and Kim, K. (2017). "Operational water quality forecast for the Yeongsan River using EFDC model." Journal of Korean Society on Water Environment, KSWE, Vol. 33, No. 2, pp. 219-229. https://doi.org/10.15681/KSWE.2017.33.2.219
  21. Song, S.H. (2016). Water quality monitoring on tributaries in Yeongsan River basin. Korea National Institute of Environmental Research, pp. 3-31.
  22. Tetra Tech, Inc. (2007). The environmental fluid dynamics code theory and computation volume 3: Water quality module manual.