DOI QR코드

DOI QR Code

콜라겐 단백가수물을 이용한 항노화 펩타이드 제조에 대한 융합 연구

Convergence Study on Preparation of Anti-aging Peptides from Fish Collagen Hydrolysates

  • 투고 : 2020.03.12
  • 심사 : 2020.05.20
  • 발행 : 2020.05.28

초록

본 연구에서는 어류 유래 콜라겐 가수분해물로부터 한외여과법(MWCO; 1 kDa)과 역상액체크로마토그래피를 이용하여 항노화 활성 기능성 펩타이드를 분리, 정제하고자 하였다. 펩타이드의 분리, 정제에 따른 항노화 활성 변화는 Hs68 세포를 사용하여 procollagen 합성능과 MMP-1 저해능을 측정하여 확인하였다. 콜라겐 가수분해물과 비교하여 최종 분리, 정제된 기능성 펩타이드의 procollagen 합성과 MMP-1 저해는 각각 46%와 77% 향상되었다. 또한 기능성 펩타이드의 구조는 Gly-Arg-Arg-Gly-Asn-Lys (GRRGNK; 콜라겐의 기본 구조인 Gly-X-Y sequence와 유사)의 서열을 보였고, 분자량은 686.175 Da으로 분석되었다. 따라서 본 연구에서는 어류 콜라겐 가수분해물로부터 분리한 펩타이드가 식품, 화장품, 의약품 등의 피부노화 지연 효과를 보이는 기능성 원료로 다양하게 사용할 수 있는 가능성을 확인하였다.

An anti-aging peptide was prepared from fish collagen hydrolysate (FCH) by ultrafiltration (MWCO; 1 kDa) and reversed-phased high performance liquid chromatography (RP-HPLC). Its anti-aging properties were evaluated based on the procollagen-synthesizing and MMP-1-inhibiting activities in Hs68 cells. A potent anti-aging peptide (fraction I-I) increased collagen synthesis by 46% and also inhibited MMP-1 secretion by 77%, compared with unpurified FCH. The amino acid sequence of fraction I-I was identified to be Gly-Arg-Arg-Gly-Asn-Lys (GRRGNK; the repeating Gly-X-Y sequence in collagen), and it had a molecular mass of 686.175 Da. It revealed that the anti-aging activity of GRRGNK was mainly due to skin protective effects. These results demonstrated that fish collagen hydrolysate may be a potential source of anti-aging peptides, which could be utilized in various field, including foods, cosmetics, and pharmaceuticals.

키워드

참고문헌

  1. J. H. Chung et al. (2001). Modulation of skin collagen metabolism in aged and photoaged human skin in vivo . Journal of Investigative Dermatology, 117(5), 1218-1224. https://doi.org/10.1046/j.0022-202x.2001.01544.x
  2. A. Veis & A. G. Brownell. (1977). Triple-helix formation on ribosome-bound nascent chains of procollagen: deuterium-hydrogen exchange studies. Proceedings of the National Academy of Sciences, 74(3), 902-905. https://doi.org/10.1073/pnas.74.3.902
  3. J. H. Yim, M. S. Jang, M. Y. Moon, H. Y. Lee, S. C. Kim & N. H. Lee. (2015). Constituents from the branches of Sambucus sieboldiana var. pendula with the properties of collagen synthesis activation. Journal of Applied Pharmaceutical Science, 5(4), 119-122.
  4. K. K. Dong et al. (2008). UV-induced DNA damage initiates release of MMP-1 in human skin. Experimental Dermatology, 17(12), 1037-1044. https://doi.org/10.1111/j.1600-0625.2008.00747.x
  5. J. Varani et al. (2001). Inhibition of Type I procollagen synthesis by damaged collagen in photoaged skin and by collagenase-degraded collagen in vitro . The American Journal of Pathology, 158(3), 931-942. https://doi.org/10.1016/s0002-9440(10)64040-0
  6. C. Alasalvar, F. Shahidi & P. Quantick. (2002). Food and health applications of marine nutraceuticals: a review, in seafoods - Quality, technology and nutraceutical applications, Berlin, Heidelberg : Springer Berlin Heidelberg.
  7. E. Rochima, S. Nadia, D. B. Ibnu, A. Eddy & I. P. Rusky. (2016). Isolation and characterization of collagenase from Bacillus subtilis (Ehrenberg, 1835); AT.CC 6633 for degrading fish skin collagen waste from Cirata Reservoir. Indonesia. Aquatic Procedia, 7(1), 76-84. https://doi.org/10.1016/j.aqpro.2016.07.010
  8. V. Zague, V. Freitas, M. C. Rosa, G. A. Castro, R. G. Jaeger & G. M. Machado-Santelli. (2011). Collagen hydrolysate intake increases skin collagen expression and suppresses matrix metalloproteinase 2 activity. Journal of Medicinal Food, 14(6), 618-624. https://doi.org/10.1089/jmf.2010.0085
  9. M. Tanaka, Y. Koyama & Y. Nomura. (2009). Effects of collagen peptide ingestion on UV-B-induced skin damage. Bioscience, Biotechnology, and Biochemistry, 73(4), 930-932. https://doi.org/10.1271/bbb.80649
  10. S. H. Park, J. K. Lee, J. K. Jeon & H. G. Byun. (2011). Characterization of a collagenase-1 inhibitory peptide purified from skate Dipturus chilensis skin. Korean Journal of Fisheries and Aquatic Sciences, 44(5), 456-463. https://doi.org/10.5657/kfas.2011.0456
  11. L. Wang, X. An, F. Yang, Z. Xin, L. Zhao & Q. Hu. (2008). Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish (Sebastes mentella ). Food Chemistry, 108(2), 616-623. https://doi.org/10.1016/j.foodchem.2007.11.017
  12. H. J. Je, Y. K. Han, H. G. Lee & I. Y. Bae. (2019). Anti-aging potential of fish collagen hydrolysates subjected to simulated gastrointestinal digestion and Caco-2 cell permeation. Journal of Applied Biological Chemistry, 62(1), 101-107. https://doi.org/10.3839/jabc.2019.015
  13. J. Kleinkauf-Rocha, L. D. Bobermin, P. M. Machado, C. A. Goncalves, C. Gottfried & A. Quincozes-Santos. (2013). Lipoic acid increases glutamate uptake, glutamine synthetase activity and glutathione content in C6 astrocyte cell line. International Journal of Developmental Neuroscience, 31(3), 165-70. https://doi.org/10.1016/j.ijdevneu.2012.12.006
  14. S. Cho, J. R. Koo & S. B. Kim. (2014). Physicochemical properties of gelatin from jellyfish Rhopilema hispidum. Fisheries and Aquatic Sciences, 17(3), 299-304. https://doi.org/10.5657/FAS.2014.0299
  15. Y. Shigemura et al. (2009). Effect of prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin. Journal of Agricultural and Food Chemistry, 57(2), 444-449. https://doi.org/10.1021/jf802785h
  16. S. Mohan, C. C. Wu, S. Shin & H. L. Fung. (2012). Continuous exposure to L-arginine induces oxidative stress and physiological tolerance in cultured human endothelial cells. Amino acids, 43(3), 1179-1188. https://doi.org/10.1007/s00726-011-1173-y
  17. L. Preciado-Patt, R. Hershkovitz, O. Lider, S. Feiertag, G. Jung & M. Fridkin. (1999). A study of extracellular matrix-cell adhesion peptidic epitopes related to human serum amyloid A (SAA). Letters in Peptide Science, 6(2), 99-108.
  18. J. Heino. (2007). The collagen family members as cell adhesion proteins. BioEssays, 29(10), 1001-1010. https://doi.org/10.1002/bies.20636
  19. T. Badenhorst, D. Svirskis & Z. Wu. (2016). Physicochemical characterization of native glycyl-l-histidyl-l-lysine tripeptide for wound healing and anti-aging: a preformulation study for dermal delivery. Pharmaceutical Development and Technology, 21(2), 152-160. https://doi.org/10.3109/10837450.2014.979944
  20. P. J. Huang, Y. C. Huang, M. F. Su, T. Y. Yang, J. R. Huang & C. P. Jiang. (2007). In vitro observations on the influence of copper peptide aids for the LED photoirradiation of fibroblast collagen synthesis. Photomedicine and Laser Surgery, 25(3), 183-190. https://doi.org/10.1089/pho.2007.2062
  21. J. Liang, X. P. Z. Zhang, N. Wang, J. Wang & Y. Li. (2010). The protective effects of long-term oral administration of marine collagen hydrolysate from Chum Salmon on collagen matrix homeostasis in the chronological aged skin of Sprague-Dawley male rats. Journal of Food Science, 75(8), H230-H238. https://doi.org/10.1111/j.1750-3841.2010.01782.x
  22. J. Z. Williams, N. Abumrad & A. Barbul. (2002). Effect of a specialized amino acid mixture on human collagen deposition. Annals of surgery, 236(3), 369-375. https://doi.org/10.1097/00000658-200209000-00013