DOI QR코드

DOI QR Code

Gradient 공식을 이용한 무인항공영상의 선명도 평가

Sharpness Evaluation of UAV Images Using Gradient Formula

  • 투고 : 2020.02.14
  • 심사 : 2020.02.27
  • 발행 : 2020.02.29

초록

본 연구에서는 그라디언트(gradient) 공식을 사용하여 무인항공사진의 선명도 분석을 실시하고, 작업자가 간단하게 사용할 수 있도록 MATLAB GUI(Graphical User Interface) 기반 선명도 분석 tool 제작에 대하여 소개하였다. 본 연구에서 제시한 선명도 분석 방법의 신뢰도를 검증하기 위하여 상용 software인 Agisoft사의 Metashape로 무인항공영상의 선명도를 측정한 결과와 비교하였다. 총 10장의 영상을 대상으로 두 가지 tool로 선명도를 각각 측정한 결과 동일 영상에 대하여 선명도 수치의 값들은 서로 상이하였다. 하지만 두 결괏값 간에는 0.11 ~ 0.20 정도의 일정한 편이(bias)가 존재하여 이를 소거하면 동일한 선명도를 나타내어 본 연구에서 제시한 선명도 분석 방법의 신뢰도를 입증하였다. 또한, 제시한 선명도 분석 방법의 실용성을 검증하기 위하여 선명도가 낮은 무인항공사진을 저품질의 영상으로 분류한 후, 각각 이를 포함한 정사영상과 이를 제외하고 제작한 정사영상의 품질을 비교하였다. 실험결과, 저품질의 무인항공사진을 포함하고 있는 정사영상은 해상도 타겟 부분의 흐림 현상으로 품질 분석이 불가하였다. 하지만 저품질의 무인항공사진을 제외하고 제작한 정사영상의 GSD (Ground Sample Distance)는 해상도 타겟이 선명하게 관측 가능하여 bar target은 3.2cm, siemens star는 4.0cm이었다. 이 결과는 본 연구에서 제시한 선명도 분석 방법의 실용성을 입증하였다.

In this study, we analyzed the sharpness of UAV-images using the gradient formula and produced a MATLAB GUI (Graphical User Interface)-based sharpness analysis tool for easy use. In order to verify the reliability of the proposed sharpness analysis method, sharpness values of the UAV-images measured by the proposed method were compared with those by measured the commercial software Metashape of the Agisoft. As a result of measuring the sharpness with both tools on 10 UAV-images, sharpness values themselves were different from each other for the same image. However, there was constant bias of 011 ~ 0.20 between two results, and then the same sharpness was obtained by eliminating this bias. This fact proved the reliability of the proposed sharpness analysis method in this study. In addition, in order to verify the practicality of the proposed sharpness analysis method, unsharp images were classified as low quality ones, and the quality of orthoimages was compared each other, which were generated included low quality images and excluded them. As a result, the quality of orthoimage including low quality images could not be analyzed due to blurring of the resolution target. However, the GSD (Ground Sample Distance) of orthoimage excluding low quality images was 3.2cm with a Bar target and 4.0cm with a Siemens star thanks to the clear resolution targets. It therefore demonstrates the practicality of the proposed sharpness analysis method in this study.

키워드

참고문헌

  1. Agisoft. (2019), Methashape, Agisoft, Petersburg, https://www.agisoft.com (last date accessed: 12 September 2019)
  2. Choi, H.S. and Lee, C.H. (2011), Sharpness measure based on the frequency domain information, Journal of Broadcast Engineering, Vol.16, No. 3, pp.552-560. (in Korean with English abstract) https://doi.org/10.5909/JEB.2011.16.3.552
  3. Dabrowski, R. and Jenerowicz, A. (2015), Preliminary results form the portable image quality assessment test field(PIQuAT) of UAV imagery for imagery reconnaissance purposes, ISPRS Workshop, 30 August-02 September, 2015, Toronto, Canada, pp.111-115.
  4. Jiang, W., Li, Y., Liang, Y., and Zeng, Y. (2010), Research on quality index system of digital aerial photography results, 4th Computer and Computing Technologies in Agriculture, CCTA, Oct 2010, Nanchang, China, pp. 381-391.
  5. Lee, J.Y., Lee, J.W., and Cho, H.G. (2007), Digital Photo Quality Measuring Method Using Image Blurness, Proceedings of 2007 KCGS Summer Conference, Vol.0, pp.147-154.
  6. Lee, J.O., Lee, T.Y., Cha, S.Y., and Lee, D.R. (2012), The Study on the sharpness of digital aerial image using edge response, Proceedings of 2012 KSGIS Fall Conference, 12 Oct., Seoul, Korea, pp. 81-82.(in Korean)
  7. Liang, Y., Zeng, Y., Jiang, W., and Wang, X. (2011), Research on automatic inspection methods of image quality of digital aerial photography results, 5th Computer and Computing Technologies in Agriculture, CCTA, Oct 2011, Beijing, China, pp. 320-331.
  8. Lim, P.C., Seo, J.H., and Kim, T.J. (2018), Extraction of UAV image sharpness index using edge target analysis, Korean Journal of Remote Sensing, Vol. 34, No. 6-1, pp.905-923. (in Korean with English abstract) https://doi.org/10.7780/KJRS.2018.34.6.1.6
  9. Mathworks. (2019), MATLAB, Mathworks, Massachusetts, https://kr.mathworks.com (last date accessed: 25 September 2019)
  10. Sieberth, T., Wackrow, R., and Chandler, J. (2016), Automatic detection of blurred images in UAV image sets, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 122, pp.1-16. https://doi.org/10.1016/j.isprsjprs.2016.09.010
  11. Sung, S.M. (2019), A study on spatial resolution analysis methods of UAV images, Ph.D.dissertation, Dong-A University, Busan, Korea, 49p. (in Korean with English abstract)
  12. Wikipedia. (2020), Gradient, Wikipedia. https://en.wikipedia.org/wiki/Gradient (last date accessed: 20 January 2020).
  13. Xue, W., Zhang, L., Mou, X., and Bovik, A. (2014), Gradient magnitude similarity deviation: A highly efficient perceptual image quality index, IEEE Transactions on Image Processing, Vol. 23, No. 2, pp.684-695. https://doi.org/10.1109/TIP.2013.2293423
  14. Yoo, M.W. (2010), A study on better ways to measure digital photo quality based on exif information, Master's thesis, Seoul National University of Technology, Seoul, Korea, 2p. (in Korean with English abstract)