DOI QR코드

DOI QR Code

GNSS 안테나 위상중심변동에 레이돔이 미치는 영향

Influence of Radome Types on GNSS Antenna Phase Center Variation

  • Yun, Seonghyeon (Department Eco-Friendly Offshore Plant FEED Engineering, Graduate School of Changwon National University) ;
  • Lee, Hungkyu (School of Civil, Environmental and Chemical Engineering, Changwon National University)
  • 투고 : 2020.01.29
  • 심사 : 2020.02.24
  • 발행 : 2020.02.29

초록

본 연구는 위성기준점 안테나 보호를 위해 설치한 레이돔이 GNSS (Global Navigation Satellite System) 안테나 위상중심변동과 정밀 기선해석으로 추정한 동적 좌표에 미치는 영향을 분석하였다. 국내 위성기준점에 설치된 Trimble과 Leica 계열 안테나를 대상으로 레이돔 미설치(NONE)를 포함해 SCIS, SCIT, TZGD에 대한 IGS(International GNSS Services) 변동모형으로부터 위성 신호 입사 방향에 따른 위상중심 변동 보정량을 계산해 그 차이를 비교하였다. 그 결과 NONE을 기준으로 레이돔을 적용한 변동 보정량 차이는 수평 방향에서는 1mm 내외로 제한적이었지만 높이 방향은 수 밀리미터에서부터 최대 7mm까지 나타났다. 비교 대상 레이돔 중 SCIT가 높이 방향 위상중심 변동에 가장 큰 영향을 미쳤으며, 레이돔 미설치와 비교한 GPS (Global Positioning System) L1과 L2 신호의 보정량 차이 방향이 반대되는 특징을 보였다. 위성기준점 7개소 관측데이터의 기선해석에 각기 다른 레이돔 변동모형 적용으로 동적 좌표를 추정·비교한 결과 최근 위성기준점에 설치한 SCIS가 비교 대상 레이돔 중 가장 큰 영향인 평균 3.4mm 편의를 나타내었다. 반면, IGS 모형 비교에서 레이돔 미설치 대비 높이 방향에 가장 큰 보정량 차이를 나타낸 SCIT 모형은 타원체고 추정에 상대적으로 낮은 평균 1.4mm 편의 경향을 보였다.

This paper deals with the impact of a GNSS (Global Navigation Satellite System) antenna radome on the PCV (Phase Center Variations) and the estimated kinematic coordinates. For the Trimble and Leica antennas, specially set up CORS (Continuously Operation Reference Stations) in Korea, the PCC (Phase Center Corrections) were calculated and compared for NONE, SCIS, SCIT, and TZGD radome from the PCV model published by the IGS (International GNSS Services). The results revealed that the PCC differences compared to the NONE were limited to about 1mm in the horizontal component while those of the vertical direction ranged from a few millimeters to a maximum of 7mm. Among the radomes of which PCV were compared, the SCIT had the most significant influence on the vertical component, and its GPS (Global Positioning System) L2 and L2 PCC (Phase Center Corrections) had opposite direction. As a result of comparing the kinematic coordinates estimated by the baseline processing of 7 CORSs with an application of the PCV models of the various radomes, the SCIS which was actually installed at CORS in Korea showed 3.4mm bias, the most substantial impact on the ellipsoidal height estimation whereas the SCIT model resulted in relatively small biases.

키워드

참고문헌

  1. Baire, Q., Aerts, W., Bruyninx, C., Pottiaux, E., and Legrand, J. (2012), Differences between GPS receiver antenna calibration models and influence on geodetic positioning, AGU Fall Meeting, Amerian Geophysical Union, 3-7 December, San Francisco, USA.
  2. Cho, I.S. and Lee, H.K. (2016), Experimental Assessment on Accuracy of Kinematic Coordinate Estimation for CORS by GPS Medium-range Baseline Processing Technique, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 34, No. 1, pp. 79-90. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2016.34.1.79
  3. Dawidowicz, K. (2013), Impact of different GNSS antenna calibration models on height determination in the ASG-EUPOS network: a case study, Survey Review, Vol. 45, No. 332, pp.386-394. https://doi.org/10.1179/1752270613Y.0000000043
  4. Kim, J.Y., Won, J.H., Park, K.D., Seo, S.W., and Park, H.W. (2014), Analysis of the optimal degree and order of spherical harmonics for the GNSS receiver antenna's PCV correction, The Korea Society For Geospatial Information System, Vol. 22, No. 3, pp. 113-119, 2014. (in Korean with English abstract) https://doi.org/10.7319/kogsis.2014.22.3.113
  5. Lee, H.K. (2018), Impact of tropospheric modeling schemes into accuracy of estimated ellipsoidal heights by GPS baseline processing : experimental analysis and results, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 36, No. 4, pp. 245-254. (in Korean with English abstract) https://doi.org/10.7848/KSGPC.2018.36.4.245
  6. Lee, Y.W., and Park, J.H. (2018), Accuracy analysis of ellipsoid height for GNSS height determination, Korean Association of Cadastre Information, Vol. 20, No. 1, pp. 121-130. (in Korean with English abstract)
  7. NGII (2018), Development of the 2017 Geoid Model and the Transformation Model of Land - Maritime Height, Report, National Geographic Information Institute, Suwon, 167p.
  8. NGS, Access calibration for all antenna, National Geodetic Survey, USA, https://www.ngs.noaa.gov/ANTCAL/LoadFile?file=ngs14.atx (last date accessed 14 January 2020).
  9. Schmitz, M., Wubbena, G., and Propp, M. (2008), Absolute robot-based GNSS antenna calibration - features and findings - International Symposium on GNSS, International Symposium on GNSS, 11-14 November, Berlin, Germany.
  10. Shin, G.S., Han, J.H., and Kwon, J.H. (2014), Accuracy analysis of orthometric heights based on GNSS static surveying, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 32, No. 5, pp. 527-537. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2014.32.5.527
  11. Seeber, G. (2003), Satellite Geodesy, Walter de Gruyter GmbH, Berlin.