참고문헌
- Castro, J.D.B., Feitosa, R.Q., Rosa, L.C.L., Diaz, P.M.A., and Sanches, I.D.A. (2017), A comparative analysis of deep learning techniques for sub-tropical crop types recognition from multitemporal optical/SAR image sequences, Proceedings of 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images, IEEE, 17-20 october, Niteroi, Brazil, pp. 382-389.
- Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018), Encoder-decoder with atrous separable convolution for semantic image segmentation, In Proceedings of the European conference on computer vision (ECCV), pp. 82-92.
- Dang, L.M., Hassan, S.I., Suhyeon, I., kumar Sangaiah, A., Mehmood, I., Rho, S., Seo, S.H., and Moon, H. (2018), UAV based wilt detection system via convolutional neural networks. Sustainable Computing, pp.1-20.
- Fisher, P.F., Comber, A.J., and Wadsworth, R. (2005), Land Use and Land Cover: Contradiction or Complement, Re-Presenting GIS, Wiley, Chichester, pp. 85-98.
- Gao, Q., Lim, S., & Jia, X. (2018), Hyperspectral image classification using convolutional neural networks and multiple feature learning. Remote Sensing, Vol. 10, No. 2, pp.1-18. https://doi.org/10.3390/rs10010001
- Hall, O., Dahlin, S., Marstorp, H., Archila Bustos, M.F., Oborn, I., and Jirström, M. (2018), Classification of maize in complex smallholder farming systems using UAV imagery, Drones, Vol. 2, No. 3, pp.1-8.
- Huang, G., Liu, S., Van der Maaten, L., and Weinberger, K. Q. (2018), Condensenet: An efficient densenet using learned group convolutions, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2752-2761.
- Ishida, T., Kurihara, J., Viray, F.A., Namuco, S.B., Paringit, E.C., Perez, G.J., and Marciano Jr, J.J. (2018), A novel approach for vegetation classification using UAV-based hyperspectral imaging, Computers and Electronics in Agriculture, Vol.144, pp. 80-85. https://doi.org/10.1016/j.compag.2017.11.027
- Jegou, S., Drozdzal, M., Vazquez, D., Romero, A., and Bengio, Y. (2017), The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation, In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 11-19.
- Jhonnerie, R., Siregar, V. P., and Nababan, B. (2017), Comparison of random forest algorithm which implemented on object and pixel based classification for mangrove land cover mapping, ICST 2016, Vol.1, pp. 292-302.
- Ji, S., Zhang, C., Xu, A., Shi, Y., and Duan, Y. (2018), 3D convolutional neural networks for crop classification with multi-temporal remote sensing images, Remote Sensing, Vol. 10, No. 1, pp. 1-17.
- Joe, W., Lim, Y., and Park. K.H, (2019), Deep learning based Land Cover Classification Using Convolutional Neural Network: a case study of Korea, Journal of the Korean Geographical Society, Vol. 54, No. 1, pp. 1-16. (in Korean with English abstract)
- Kamilaris, A. and Prenafeta-Boldu, F.X. (2018), Deep learning in agriculture: A survey, Computers and Electronics in Agriculture, Vol. 147, pp. 70-90. https://doi.org/10.1016/j.compag.2018.02.016
- Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014), Large-scale video classification with convolutional neural networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725-1732.
- Kussul, N., Lavreniuk, M., Skakun, S., and Shelestov, A. (2017), Deep learning classification of land cover and crop types using remote sensing data, IEEE Geoscience and Remote Sensing Letters, Vol. 14, No. 5, pp. 778-782. https://doi.org/10.1109/LGRS.2017.2681128
- Kwak, G.H., Park, S., Yoo, H.Y., and Park, N.W. (2017), Updating land cover maps using object segmentation and past land cover information, Korean Journal of Remote Sensing, Vol. 33, No. 6_2, pp. 1089-1100. (in Korean with English abstract) https://doi.org/10.7780/KJRS.2017.33.6.2.5
- LeCun, Y., Bengio, Y., and Hinton, G. (2015), Deep learning, Nature, Vol. 521, pp. 436-444. https://doi.org/10.1038/nature14539
- Long, J., Shelhamer, E., and Darrell, T. (2015), Fully convolutional networks for semantic segmentation, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431-3440.
- Murugan, D., Garg, A., and Singh, D. (2017), Development of an adaptive approach for precision agriculture monitoring with drone and satellite data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 10, No. 12, pp. 5322-5328. https://doi.org/10.1109/JSTARS.2017.2746185
- Onojeghuo, A.O., Blackburn, G.A., Wang, Q., Atkinson, P.M., Kindred, D., and Miao, Y. (2018), Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data, International Journal of Remote Sensing, Vol. 39, No. 4, pp. 1042-1067. https://doi.org/10.1080/01431161.2017.1395969
- Park, J.K. and Park, J.H. (2015), Crops classification using imagery of unmanned aerial vehicle (UAV), Journal of the Korean Society of Agricultural Engineers, Vol. 57, No. 6, pp. 91-97. (in Korean with English abstract) https://doi.org/10.5389/KSAE.2015.57.6.091
- Pohlen, T., Hermans, A., Mathias, M., and Leibe, B. (2017), Full-resolution residual networks for semantic segmentation in street scenes, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4151-4160.
- Scott, G. J., England, M. R., Starms, W. A., Marcum, R. A., and Davis, C. H. (2017), Training deep convolutional neural networks for land-cover classification of high-resolution imagery, IEEE Geoscience and Remote Sensing Letters, Vol. 14, No. 4, pp. 549-553. https://doi.org/10.1109/LGRS.2017.2657778
- Skakun, S., Franch, B., Vermote, E., Roger, J.C., Becker-Reshef, I., Justice, C., and Kussul, N. (2017), Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model, Remote Sensing of Environment, Vol. 195, pp. 244-258. https://doi.org/10.1016/j.rse.2017.04.026
- Song, A. and Kim, Y. (2017), Deep learning-based hyperspectral image classification with application to environmental geographic information systems, Korean Journal of Remote Sensing, Vol. 33, No. 6, pp. 1061-1073. (in Korean with English abstract)
- Sung, S.M. and Lee, J.O. (2016), Accuracy of parcel boundary demarcation in agricultural area using UAV-photogrammetry, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, pp. 53-62. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2016.34.1.53
- Torbick, N., Huang, X., Ziniti, B., Johnson, D., Masek, J., and Reba, M. (2018), Fusion of moderate resolution earth observations for operational crop type mapping, Remote Sensing, Vol. 10, No. 7, pp. 1-16.
- Xu, X., Ji, X., Jiang, J., Yao, X., Tian, Y., Zhu, Y., Cao, W., Cao, Q., Yang, H., Shi, Z., and Cheng, T. (2018), Evaluation of one-class support vector classification for mapping the paddy rice planting area in Jiangsu Province of China from Landsat 8 OLI imagery, Remote Sensing, Vol. 10, No. 4, pp. 1-23.
- Zhong, Y., Fei, F., Liu, Y., Zhao, B. and Jiao, Jial. H. (2017), SatCNN: satellite image dataset classification using agile convolutional neural networks, Remote Sensing Letters, Vol. 8, No. 2, pp. 136-145. https://doi.org/10.1080/2150704X.2016.1235299
- Zhong, L., Gong, P., and Biging, G.S. (2014), Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery, Remote Sensing of Environment, Vol. 140, pp. 1-13. https://doi.org/10.1016/j.rse.2013.08.023
피인용 문헌
- 기계학습 기법에 따른 KOMPSAT-3A 시가화 영상 분류 - 서울시 양재 지역을 중심으로 - vol.36, pp.6, 2020, https://doi.org/10.7780/kjrs.2020.36.6.2.7
- 무인항공기와 딥러닝(UNet)을 이용한 소규모 농지의 밭작물 분류 vol.38, pp.6, 2020, https://doi.org/10.7848/ksgpc.2020.38.6.671
- Hue 채널 영상의 다중 클래스 결합을 이용한 객체 기반 영상 분류 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.3.9