• Title/Summary/Keyword: 레이돔

Search Result 36, Processing Time 0.029 seconds

Influence of Radome Types on GNSS Antenna Phase Center Variation (GNSS 안테나 위상중심변동에 레이돔이 미치는 영향)

  • Yun, Seonghyeon;Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • This paper deals with the impact of a GNSS (Global Navigation Satellite System) antenna radome on the PCV (Phase Center Variations) and the estimated kinematic coordinates. For the Trimble and Leica antennas, specially set up CORS (Continuously Operation Reference Stations) in Korea, the PCC (Phase Center Corrections) were calculated and compared for NONE, SCIS, SCIT, and TZGD radome from the PCV model published by the IGS (International GNSS Services). The results revealed that the PCC differences compared to the NONE were limited to about 1mm in the horizontal component while those of the vertical direction ranged from a few millimeters to a maximum of 7mm. Among the radomes of which PCV were compared, the SCIT had the most significant influence on the vertical component, and its GPS (Global Positioning System) L2 and L2 PCC (Phase Center Corrections) had opposite direction. As a result of comparing the kinematic coordinates estimated by the baseline processing of 7 CORSs with an application of the PCV models of the various radomes, the SCIS which was actually installed at CORS in Korea showed 3.4mm bias, the most substantial impact on the ellipsoidal height estimation whereas the SCIT model resulted in relatively small biases.

Development of an Electromagnetic Analysis Methodology for the Aspheric Ogival Radome (원뿔형 비구면 레이돔에 대한 전자파 해석 기법 개발)

  • Seo, Seung-Hee;Cho, Ji-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.617-624
    • /
    • 2009
  • In this paper, an electromagnetic analysis methodology using reaction theorem based on reciprocity theorem is presented for the aspheric ogival radome applied to a missile and/or airborne radar. The presented analysis methodology is verified using actual measured data. The type of antenna assumed to develope the methodology is a waveguide slot array antenna, and has the structure of 2 axes monopulse of "X" type. The shape of radome is assumed as Von Karman and the ratio of length to base diameter(L/D) is assumed to be 2:1. The electrical characteristics of the radome are measured using radome measurement system and the results are compared to the values estimated using the presented analysis methodology. It is found that the comparison shows good agreement. It is expected that the presented methodology can be applied for the development of missile and airborne radome.

Radome Slope Estimation using Mode Parameter Renewal Method of IMM Algorithm (IMM 알고리듬의 모드 계수 갱신 방법을 통한 레이돔 굴절률 추정)

  • Kim, Young-Mo;Back, Ju-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.763-770
    • /
    • 2017
  • A radome mounted on the front of an aircraft can cause refraction errors for various reasons that occur during maneuver in seeking and tracking a target. This refraction error means that the microwave seeker is detecting apparent target. An Interactive Multiple Model (IMM) algorithm is applied to estimate radome slope mounted on an aircraft in 3D space. However, even though the parameter of uncertain system model such as radome slope can be estimated, the estimated performance can not be guaranteed when it exceeds the range of the predicted value. In this paper, we propose a method to update the predicted value by using the radome slope as the mode parameter of the IMM algorithm, and confirm the radome slope estimation performance of the proposed method.

Design of Multilayer Radome with Particle Swarm Optimization (Particle Swarm Optimization을 이용한 다층 구조 레이돔 설계)

  • Lee, Kyung-Won;Hong, Ic-Pyo;Park, Beom-Jun;Chung, Yeong-Chul;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.744-751
    • /
    • 2010
  • In this paper, the design of multilayer radome within, the insertion loss, -0.3 dB in X-band with PSO was carried out based on two cases. The first is that, deciding material constant of skin and core, each layer thickness of c-sandwich radome with PSO is found and the second is that, deciding material constant and thickness of the skins of both sides, the material constant and thickness of three layers between skins of both sides using PSO is decided. The performance of the designed radome almost agreed with the required performance. It was showed that the radome design applying PSO algorithm is easy and fast and the optimum radome is also designed in combination of the various parameters of radome. From these results, the radome having various performance can be designed except the tedious calculation and also be applied to various radome structure.

Development of Radar Beam Steering Measurement System and measurement Boresight Error (레이다 빔조향 특성 측정 장치 개발 및 보어 사이트 에러 측정)

  • Yong-kil Kwak
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.546-551
    • /
    • 2023
  • In this study, a beam steering measurement system was developed to perform functions such as far-field beam steering and near-field beam focusing for TX/RX modes in the near file of the AESA radar. The beam steering measurement system consists of a spherical near-field scanner, an antenna positioner, a near-field controller, a network analyzer, a radar control system, a verification radar, a simulated radio, and an AESA radar. Using the developed system, the characteristics of TX/RX patterns before and after installation of radome to AESA radar were measured, and the beam pattern was analyzed through conversion to far field-after near-field measurement.The boresight error of the radar antenna device was measured, and it was confirmed that the main lobes were formed the same before and after the simulated radar dome was mounted.

Analysis of A-Sandwich Radome with Metamaterials Core (메타 물질 코어를 갖는 A-Sandwich 레이돔 전파 특성 해석)

  • Lee, Kyung-Won;Hong, Ic-Pyo;Park, Beom-Jun;Chung, Yeong-Chul;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1161-1170
    • /
    • 2009
  • In this paper, dielectric, drude model and ideal metamaterial are applied to core of A-Sandwich radome and each radome is analyzed using recursive method in Ku band. The main parameters of radome performance are insertion loss, insertion phase delay and depolarization. In case of ideal metamaterial, the radome using ideal metamaterial dose not generate depolarization because insertion loss, insertion phase delay and loss for incidence angle of wave do not happened. If circular polarization wave is incident on radome with meta material, transmitted wave also keeps circular polarization. In case of the dispersive metamaterial, the performance of radome using dispersive metamaterial is better than it of radome using dielectric in a part of frequency band. From these results, it is showed that metamaterial can be applied to various radome structure.

A Method of Boresight Error Compensation for Missile Radome (유도탄용 레이돔 시선각 오차 보정 기법)

  • Kim, Gwang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.56-63
    • /
    • 2005
  • The radome boresight error degrades the microwave seeker ability and the missile guidance performance. It increases the miss distance, also. This paper propose a method of radome boresight error measurement and compensation. The compensation method consist of radome analysis and radome compensation. In the radome analysis stage, we can know that the electromagnetic characteristics distorted by radome. In the compensation stage, the look-up table is built and used for compensation. The test uses a FMS(Flight motion simulator) and adjusts the FMS setup error for more accuracy. The result shows that not using an elaborate radome measurement equipment, the radome boresight error is well compensated easily.

Analysis of Radiation Characteristics of Ka-Band Von Karman Radome Based on IPO Scheme (IPO(Iterative PO)를 이용한 Ka 대역 Von Karman 레이돔 방사 특성 해석)

  • Koh, Il-Suek;Park, Chang-Hyun;Sun, Woong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1148-1154
    • /
    • 2011
  • In this paper, the radiation properties of a Ka-band Von Karman radome are analyzed by using an IPO(Iterative PO) scheme. Since the operating frequency is very high, and the size of the considered radome is large, a numerical method cannot be directly applied to calculate the properties of the radome such as transmission loss, radome pattern, boresight error, etc. Hence, in this paper, an IPO scheme is used, which can efficiently consider the multiple interaction inside the radome. Also, the IPO scheme is based on the PO scheme, which is efficient and fast in a numerical point of view. The proposed scheme is verified based on Ku-band measurement data, and its feasibility for applicability to a higher frequency simulation is addressed through a simulation at the Ka-band.

Wind Tunnel Test of Aerodynamic Forces and Wind Pressures Acting on Muilti-layer Radom in Active Phased Array Radar (풍동실험을 통한 능동위상배열레이더에서 다층레이돔에 작용하는 공기력과 풍압의 실험적 연구)

  • Yim, Sung-Hwan;Kang, Kwang-Hee;Choi, Ji-Ho;Lee, Seung-Ho;Kwon, Soon-Duck
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.149-157
    • /
    • 2014
  • In this paper, we investigated the sensitivity of aerostatic force coefficients of multi-layer radom in the various wind speeds. The test was conducted in KOCED Wind Tunnel Center in Chonbuk National University, and wind speeds were in the range from 5 m/s to 26 m/s in order to determine the Reynolds number independence. The test results of present multi-layer radom were not affected by the Reynolds number, The maximum positive pressure coefficient was found to be 1.08 at the center of the front of the plane in angle of attack of 0 degree, the maximum negative pressure coefficient was -2.03 at the upper right corner in angle of attack of 120 degree, while maximum drag coefficient was 1.11 in angle of attack of 180 degree.