DOI QR코드

DOI QR Code

블록체인 기술을 이용한 안전 거래 시스템 구축(사례:중고자동차)

Construction for Safe Transaction System using Blockchain Technology(Case:Used Car)

  • 투고 : 2020.03.03
  • 심사 : 2020.04.20
  • 발행 : 2020.04.28

초록

온라인 상에서의 전자 상거래 관리 시스템은 점차 증가하고 있으며 다양한 항목에서 거래가 이루어지고 있다. 그러나 온라인 상에서의 중고 거래시 자동차와 같은 고액 거래에서는 판매자와 구매자 간의 신뢰성이 매우 중요하다. 그럼에도 불구하고, 기존의 중고 거래 시스템에서는 사기를 방지하거나 판매자를 신뢰할 수 있는 장치가 미흡하다. 본 논문은 중고 거래시 발생하는 신뢰성 향상을 위해 블록체인 기반의 중고 거래 관리 시스템을 개발하였다. 여러 분야의 중고 거래가 있지만 가장 금액이 큰 중고 자동차에 대한 거래 관리 시스템을 개발함으로써 안전 거래 시스템을 향상시켰다. 본 시스템은 이더리움 기반의 스마트 컨트랙트를 이용하여 제 3자의 개입 없이도 신뢰성을 보장하는 방식이다. 스마트 컨트랙트를 활용해서 중고자동차 거래에 필요한 계약을 설계하여 기존의 중고차 거래 시 거래 참가자의 노력과 시간을 감소시킴과 동시에 안전한 거래가 가능하도록 하였다. 그리고 본 시스템은 구매자와 판매자 간 정보의 비대칭성을 완화시키고 제 3자가 개입하지 않는 유통과정의 중개수수료를 절감 및 예방하였다.

Online e-commerce management systems are gradually increasing, and transactions are made in various items. However, the reliability between sellers and buyers is very important in high-priced transactions such as automobiles when used transactions online. Nevertheless, in the existing used trading system, a device that prevents fraud or trusts the seller is insufficient. This paper developed a blockchain-based used transaction management system to improve the reliability that occurs during used transactions. We have improved the safety trading system by developing a trading management system for used cars with the highest amount of used cars in various fields. This system uses Ethereum-based smart contract to guarantee reliability without third party intervention. By designing the contracts required for used car trading by utilizing smart contracts, it was possible to reduce the effort and time of trading participants in the existing used car transactions, while enabling safe transactions. In addition, this system mitigated information asymmetry between buyers and sellers, and reduced and prevented brokerage fees in the distribution process without third parties.

키워드

참고문헌

  1. C. H. Cheng, C. H. Chen, You-Shyang Chen, Ho-Long Guo and Chien-Ku Lin. (2019). Exploring Taiwanese's smartphone user intention: an integrated model of technology acceptance model and information system successful model. International Journal of Social and Humanistic Computing, 3(2), 97-107. https://doi.org/10.1504/IJSHC.2019.101591
  2. Yuting Pana Xia osong Zhanga YiW. (2019). Application of Blockchain in Carbon Trading. Energy Procedia, 158(2), 4286-4291. DOI: 10.1109/TIFS.2017.2725820
  3. C. Zhang, Q, Wang & D. Shi. (2016). Scenario-based potential effects of carbon trading in China: An integrated approach. Applied Energy, 182, 177-190. https://doi.org/10.1016/j.apenergy.2016.08.133
  4. S. Noor, W. Yang & M. Guo. (2018), Energy Demand Side Management within micro-grid networks enhanced by blockchain. Applied Energy, 228, 1385-1398. https://doi.org/10.1016/j.apenergy.2018.07.012
  5. Y. Zhou, J. Wu & C. Long. (2018). Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework. Applied Energy, 222, 993-1022. https://doi.org/10.1016/j.apenergy.2018.02.089
  6. Sikorski JJ, Haughton J and Kraft M. (2017). Blockchain technology in the chemical industry: Machine-to-machine electricity market. Applied Energy, 195, 234-246. https://doi.org/10.1016/j.apenergy.2017.03.039
  7. X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, P. Rimba. (2017). A taxonomy of blockchain-based systems for architecture design. IEEE International Conference on Software Architecture (ICSA), 243-252.
  8. Zibin Zheng, Shaoan Xie, Hong-Ning Dai and Weili Chen. (2020). An overview on smart contracts: Challenges, advances and platforms. Future Generation Computer Systems, 105, 475-491. https://doi.org/10.1016/j.future.2019.12.019
  9. Ahmet Bugday, Adnan Ozsoy, Serdar Murat Oztaner and Hayri Sever. (2019). Creating consensus group using online learning based reputation in blockchain networks. Pervasive and Mobile Computing, 59, 111-125.
  10. Matevž Pustišek and Andrej Kos. (2018). .Approaches to Front-End IoT Application Development for the Ethereum Blockchain. Procedia Computer Science, 129, 410-419. https://doi.org/10.1016/j.procs.2018.03.017
  11. D. C. Guo, J. Q. Dong & Kai Wang. (2019). Graph structure and statistical properties of Ethereum transaction relationships. Information Sciences, 492, 58-71. https://doi.org/10.1016/j.ins.2019.04.013
  12. R. Cong & A. Y. Lo. (2017) Emission trading and carbon market performance in Shenzhen. Applied Energy, 193, 414-425. https://doi.org/10.1016/j.apenergy.2017.02.037
  13. J. Jiang, D. Xie & B. Ye. (2016). Research on China's cap-and-trade carbon emission trading scheme. Applied Energy, 178, 902-917. https://doi.org/10.1016/j.apenergy.2016.06.100
  14. K. N .Khaqqi, J. J. Sikorski & K. Hadinoto. (2018). Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application. Applied Energy, 209, 8-19. https://doi.org/10.1016/j.apenergy.2017.10.070
  15. N. Nizamuddin, K. Salah, M. Ajmal Azad & J. Arshad. (2019). Decentralized document version control using ethereum blockchain and IPFS. Computers & Electrical Engineering, 76, 183-197. https://doi.org/10.1016/j.compeleceng.2019.03.014