DOI QR코드

DOI QR Code

기계학습과 GloSea5를 이용한 장기 농업기상 예측 : 고랭지배추 재배 지역을 중심으로

The long-term agricultural weather forcast methods using machine learning and GloSea5 : on the cultivation zone of Chinese cabbage.

  • 김준석 (대구대학교 통계학과) ;
  • 양미연 ((재)대구디지털산업진흥원 빅데이터활용센터) ;
  • 윤상후 (대구대학교 수리빅데이터학부)
  • Kim, Junseok (Department of Statistics, Daegu University) ;
  • Yang, Miyeon (Daegu Digital Industry Promotion Agency) ;
  • Yoon, Sanghoo (Division of Mathematics and big data science, Daegu University)
  • 투고 : 2020.02.14
  • 심사 : 2020.04.20
  • 발행 : 2020.04.28

초록

농작물 재배에 있어 가장 큰 위험 요소는 날씨이므로 재배지의 장기 농업 기상정보를 얻을 수 있다면 정식과 수확 시기 등을 예측할 수 있다. 따라서 체계적인 농작업을 기획하여 관리할 수 있으며 이는 농가의 안정적인 수확으로 이어질 것으로 기대한다. 본 연구는 GloSea5와 기계학습을 이용하여 효과적인 고랭지배추의 재배를 위한 장기 농업기상정보 예측 방법을 제시하였다. GloSea5는 계절예측시스템으로 최대 240일까지의 기상을 예측한다. 심층신경망과 공간랜덤포레스트를 이용하여 장기 일 평균기온을 예측한 결과 심층신경망이 공간랜덤포레스트에 비해 장기예측성능이 우수하였다. 하지만 공간랜덤포레스트는 강원도 전역의 기온을 짧은 시간에 예측하는 장점이 있다. 공간랜덤포레스트로 분석한 결과 여름철과 해발고도가 낮은 지역의 장기 일 평균기온이 잘 예측되었다.

Systematic farming can be planned and managed if long-term agricultural weather information of the plantation is available. Because the greatest risk factor for crop cultivation is the weather. In this study, a method for long-term predicting of agricultural weather using the GloSea5 and machine learning is presented for the cultivation of Chinese cabbage. The GloSea5 is a long-term weather forecast that is available up to 240 days. The deep neural networks and the spatial randomforest were considered as the method of machine learning. The longterm prediction performance of the deep neural networks was slightly better than the spatial randomforest in the sense of root mean squared error and mean absolute error. However, the spatial randomforest has the advantage of predicting temperatures with a global model, which reduces the computation time.

키워드

참고문헌

  1. M. H. Na, Y. H. Park & W. H. Cho. (2017). A study on optimal environmental factors of tomato using smart farm data. Journal of the Korean Data & Information Science Society, 28(6), 1427-1435. https://doi.org/10.7465/jkdi.2017.28.6.1427
  2. B. J. Kang & H. C. Cho. (2016). System of Agricultural Land Monitoring Using UAV. Journal of the Korea Academia-Industrial cooperation Society, 17(6), 372-378. https://doi.org/10.5762/KAIS.2016.17.6.372
  3. M. Kim, S. Hong & S. Yoon. (2018). The Comparison of Peach Price and Trading Volume Prediction Model Using Machine Learning Technique. Journal of The Korean Data Analysis Society, 20(6), 2933-2940. https://doi.org/10.37727/jkdas.2018.20.6.2933
  4. M. I. Jung, S. W. Son, J. Choi & H. S. Kang. (2015). "Assessment of 6-Month Lead Prediction Skill of the GloSea5 Hindcast Experiment". Atmosphere, 25(2), 323-337. https://doi.org/10.14191/Atmos.2015.25.2.323
  5. K. H. Son, D. H. Bae & H. S. Cheong. (2015). Construction & Evaluation of GloSea5-Based Hydrological Drought Outlook System. Atmosphere 25(2), 271-281. https://doi.org/10.14191/Atmos.2015.25.2.271
  6. J. S. Min, M. H. Lee, J. B. Jee & M. Jang. (2016). A Study of the Method for Estimating the Missing Data from Weather Measurement Instruments. Journal of Digital Convergence, 14(8), 245-252. https://doi.org/10.14400/JDC.2016.14.8.245
  7. J. H. Ha, Y. H. Lee & Y. H. Kim. (2016). Forecasting the precipitation of the next day using deep learning. Journal of Korean Institute of Intelligent Systems 26(2), 93-98. https://doi.org/10.5391/JKIIS.2016.26.2.093
  8. Tran Q. K. & S. K. Song. (2017). Water Level Forecasting based on Deep Learning: A Use Case of Trinity River-Texas-The United States. Journal of KIISE 44(6), 607-612. https://doi.org/10.5626/JOK.2017.44.6.607
  9. I. C. Son et al. (2015). Effects of Differentiated Temperature Based on Growing Season Temperature on Growth and Physiological Response in Chinese Cabbage 'Chunkwang'. Korean Journal of Agricultural and Forest Meteorology, 17(3), 254-260. https://doi.org/10.5532/KJAFM.2015.17.3.254
  10. M. Yang & S. Yoon. (2018). Production of agricultural weather information by Deep Learning. Journal of Digital Convergence, 16(12), 293-299. https://doi.org/10.14400/JDC.2018.16.12.293
  11. N. R. Jo. (2017). Design and Implementation of criminal Identification System Based on Deep Learning. Master dissertation, Gachon University, Gyeonggi.
  12. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  13. Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. & Graler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6, e5518. https://doi.org/10.7717/peerj.5518
  14. Davies, T. et al.(2005). A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 131(608), 1759-1782. https://doi.org/10.1256/qj.04.101
  15. Madec, G. (2008). the Nemo team (2008) NEMO ocean engine. Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL), France, (27).
  16. Bailey, D. et al.(2010). Community ice CodE (CICE) user's guide version 4.0. National Center for Atmospheric Research, Boulder, Colorado, 22.
  17. Best, M. J. et al.(2011). The Joint UK Land Environment Simulator (JULES), model description- Part 1: energy and water fluxes. Geoscientific Model Development, 4(1), 677-699. https://doi.org/10.5194/gmd-4-677-2011
  18. Valcke, S. (2013). The OASIS3 coupler: a European climate modelling community software. Geoscientific Model Development, 6(2), 373. https://doi.org/10.5194/gmd-6-373-2013