참고문헌
- M. H. Na, Y. H. Park & W. H. Cho. (2017). A study on optimal environmental factors of tomato using smart farm data. Journal of the Korean Data & Information Science Society, 28(6), 1427-1435. https://doi.org/10.7465/jkdi.2017.28.6.1427
- B. J. Kang & H. C. Cho. (2016). System of Agricultural Land Monitoring Using UAV. Journal of the Korea Academia-Industrial cooperation Society, 17(6), 372-378. https://doi.org/10.5762/KAIS.2016.17.6.372
- M. Kim, S. Hong & S. Yoon. (2018). The Comparison of Peach Price and Trading Volume Prediction Model Using Machine Learning Technique. Journal of The Korean Data Analysis Society, 20(6), 2933-2940. https://doi.org/10.37727/jkdas.2018.20.6.2933
- M. I. Jung, S. W. Son, J. Choi & H. S. Kang. (2015). "Assessment of 6-Month Lead Prediction Skill of the GloSea5 Hindcast Experiment". Atmosphere, 25(2), 323-337. https://doi.org/10.14191/Atmos.2015.25.2.323
- K. H. Son, D. H. Bae & H. S. Cheong. (2015). Construction & Evaluation of GloSea5-Based Hydrological Drought Outlook System. Atmosphere 25(2), 271-281. https://doi.org/10.14191/Atmos.2015.25.2.271
- J. S. Min, M. H. Lee, J. B. Jee & M. Jang. (2016). A Study of the Method for Estimating the Missing Data from Weather Measurement Instruments. Journal of Digital Convergence, 14(8), 245-252. https://doi.org/10.14400/JDC.2016.14.8.245
- J. H. Ha, Y. H. Lee & Y. H. Kim. (2016). Forecasting the precipitation of the next day using deep learning. Journal of Korean Institute of Intelligent Systems 26(2), 93-98. https://doi.org/10.5391/JKIIS.2016.26.2.093
- Tran Q. K. & S. K. Song. (2017). Water Level Forecasting based on Deep Learning: A Use Case of Trinity River-Texas-The United States. Journal of KIISE 44(6), 607-612. https://doi.org/10.5626/JOK.2017.44.6.607
- I. C. Son et al. (2015). Effects of Differentiated Temperature Based on Growing Season Temperature on Growth and Physiological Response in Chinese Cabbage 'Chunkwang'. Korean Journal of Agricultural and Forest Meteorology, 17(3), 254-260. https://doi.org/10.5532/KJAFM.2015.17.3.254
- M. Yang & S. Yoon. (2018). Production of agricultural weather information by Deep Learning. Journal of Digital Convergence, 16(12), 293-299. https://doi.org/10.14400/JDC.2018.16.12.293
- N. R. Jo. (2017). Design and Implementation of criminal Identification System Based on Deep Learning. Master dissertation, Gachon University, Gyeonggi.
- Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. & Graler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6, e5518. https://doi.org/10.7717/peerj.5518
- Davies, T. et al.(2005). A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 131(608), 1759-1782. https://doi.org/10.1256/qj.04.101
- Madec, G. (2008). the Nemo team (2008) NEMO ocean engine. Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL), France, (27).
- Bailey, D. et al.(2010). Community ice CodE (CICE) user's guide version 4.0. National Center for Atmospheric Research, Boulder, Colorado, 22.
- Best, M. J. et al.(2011). The Joint UK Land Environment Simulator (JULES), model description- Part 1: energy and water fluxes. Geoscientific Model Development, 4(1), 677-699. https://doi.org/10.5194/gmd-4-677-2011
- Valcke, S. (2013). The OASIS3 coupler: a European climate modelling community software. Geoscientific Model Development, 6(2), 373. https://doi.org/10.5194/gmd-6-373-2013