DOI QR코드

DOI QR Code

Assessment of Ni Catalyst Properties for Removal of O2 and CO Impurity in Inert Gas

불활성 가스의 O2와 CO 불순물 제거를 위한 Ni 촉매의 물성 평가

  • Received : 2020.01.03
  • Accepted : 2020.04.03
  • Published : 2020.04.29

Abstract

This study examined the catalytic property of Ni-catalyst used in the gas purifying process to manufacture inert gases of N2 and Ar with high-purity over 9N for semiconductor industrial applications. Two types of Ni-catalysts with a cylindrical shape (C1) and churros shape structure (C2) were compared for the assessment. Optical microscopy and FESEM were used to analyze the shape and microstructure of the Ni-catalyst. EDS, XRD, and micro-Raman characterization were performed to examine the composition and properties. BET and Pulse Titration analyses were conducted to check the surface area and catalytic property of the Ni-catalyst. From the composition analysis results, C1 contained a relatively large amount of graphite as an impurity, and C2 contained higher Ni contents than C1. From specific surface area analysis, the specific surface area of C2 was approximately 1.69 times larger than that of C1. From catalytic property analysis, outstanding performance in O2 and CO impurity removal was observed at room temperature. Therefore, C2, having low-impurity and large specific surface area, is a suitable catalyst for the high-purity inert gas process in the semiconductor industry because of its outstanding performance in O2 and CO impurity removal at room temperature.

반도체 산업용 9N 이상의 초고순도 N2, Ar 등 불활성 가스 제조를 위해 가스 정제공정에 사용되고 있는 Ni 촉매의 물성 평가 및 촉매적 특성을 확인하였다. 조성이 다른 원기둥 형태의 C1, 츄러스 형태의 C2의 두 가지 Ni 촉매에 대해 비교 평가를 진행하였다. Ni 촉매의 형상과 미세구조를 분석하기 위해 광학현미경과 FE-SEM을 이용하였으며, 조성 확인 및 물성을 분석하기 위해 EDS, XRD, 그리고 micro-Raman 분석을 이용하였다. 또한 Ni 촉매의 비표면적 및 촉매적 특성을 확인하기 위해 BET, Pulse Titration 분석을 진행하였다. 조성 분석결과, C1의 경우, 상대적으로 graphite가 불순물로 다량 포함되어 있는 것을 확인하였으며, C2는 C1에 비해 Ni의 함량이 높은 것을 확인하였다. 비표면적 분석 결과, C2의 비표면적이 C1보다 약 1.69배 정도 큰 것을 확인할 수 있었다. 촉매적 특성분석 결과, 상온에서 O2와 CO 불순물 제거 정도가 C2가 우수함을 확인하였다. 따라서 반도체 산업용 초고순도 불활성 기체 제조를 위한 Ni 촉매로는 불순물이 적고, 비표면적이 크며, 상온에서 O2와 CO 제거 성능이 우수한 C2가 적합함을 확인하였다.

Keywords

References

  1. K. Kato, Y. Shionoiri, Y. Sekine, K. Furutani, T. Hatano, T. Aoki, M. Sasaki, H. Tomatsu, J. Koyama, S. Yamazaki, "Evaluation of Off-State Current Characteristics of Transistor Using Oxide Semiconductor Material, Indium-Gallium-Zinc Oxide", Japanese Journal of Applied Physics, Vol.51, No. R2, pp.021201-021207, Jan. 2012. DOI:https://doi.org/10.1143/JJAP.51.021201
  2. Y. Li, L. Zhang, X. Zhong, A. Windle, "Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions", Nanotechnology, Vol.18. No.22, May 2007. DOI:https://doi.org/10.1088/0957-4484/18/22/225604
  3. F.Garci, Y. Ma, I. Rodriguez-Ramos, A. Ruiz, "High purity hydrogen production by low temperature catalytic ammonia decomposition in a multifunctional membrane reactor", Catalysis Communications, Vol.9, No.3, pp.482-486, Mar. 2008. DOI:https://doi.org/10.1016/j.catcom.2007.07.036
  4. C. Xu, X. Xu, J. Su, Y, Ding, "Research on unsupported nanoporous gold catalyst for CO oxidation", Journal of Catalysis, Vol.252, No.2, pp.243-248, Dec. 2007. DOI:https://doi.org/10.1016/j.jcat.2007.09.016
  5. K. TODA, T. SHIMIZU, I. SANEMASA, "Double Schottky Diode-Type Gas Sensor for Discriminative Detection of Phosphine and Hydrogen", Analytical Sciences, Vol.11, pp.317-318, Nov. 1995. DOI:https://doi.org/10.2116/analsci.11.317
  6. T. Itoh, N. Izu, T. Akamatsu, W. Shin, Y. Miki, "Elimination of Flammable Gas Effects in Cerium Oxide Semiconductor-Type Resistive Oxygen Sensors for Monitoring Low Oxygen Concentrations", Sensors, Vol.15, No.4, pp.9427-9437, Apr. 2015. DOI:https://doi.org/10.3390/s150409427
  7. E. Erdogan, M. Kundakcl, A. Kasapoglu, E. Gur, "p-Si(100)/InGaN thin film structure and investigation of its physical properties: $N_{2}$ gas flow effect", Materials Today: Proceedings, Vol.18, No.5, pp.1868-1874 2019. DOI:https://doi.org/10.1016/j.matpr.2019.06.675
  8. S. Campbell, Y. Qu1, J. Major, D. Lararde, C. Labbe, "Direct evidence of causality between chemical purity and band-edge potential fluctuations in nanoparticle ink-based $Cu_{2}ZnSn(S,Se)_{4}$ solar cells", Journal of Physics D: Applied Physics, Vol.52, pp.11, Jan. 2019. DOI:https://doi.org/10.1088/1361-6463/aafe60
  9. A. Ostroverkh, V. Johanek, M. Dubau, P. Kus, I. Hhalakhan., "Optimization of ionomer-free ultra-low loading Pt catalyst for anode/cathode of PEMFC via magnetron sputtering", International Journal of Hydrogen Energy, Vol.44, No.35, pp.19344-19356, Jul. 2019. DOI:https://doi.org/10.1016/j.ijhydene.2018.12.206
  10. F. Chen, D. He, L. Chen, X. Chang, D. Z. Wang., "Chirality-Economy Catalysis: Asymmetric Transfer Hydrogenation of Ketones by Ru-Catalysts of Minimal Stereogenicity", ACS Catalysis, Vol.9, No.6, pp.5562-5566, May 2019. DOI:https://doi.org/10.1021/acscatal.9b01535
  11. Jens, R. R.-N., "Activity of Nickel Catalysts for Steam Reforming of hydrocarbons", Journal of Catalysis, Vol.31, No.2, pp.173-199, Nov. 1973. DOI:https://doi.org/10.1016/0021-9517(73)90326-6
  12. S. Fang, Z. Cui, Y. Zhu, C. Wang, J. Bai, X. Zhang, "In situ synthesis of biomass-derived Ni/C catalyst by self-reduction for the hydrogenation of levulinic acid to ${\gamma}$-valerolactone", Journal of Energy Chemistry, Vol.37, pp.204-214, Oct. 2019. DOI:https://doi.org/10.1016/j.jechem.2019.03.021
  13. J. Chen, P. C. Hyayes, "Mechanisms and Kinetics of Reduction of Solid NiO in CO/$CO_{2}$ and CO/Ar Gas Mixtures", Metallurgical and Materials Transactions B, Vol.50B, No.6, 2623-2635, Dec. 2019. DOI:https://doi.org/10.1007/s11663-019-01662-5
  14. Y. Oh, H. Roh, K. Jun, Y. S. Baek, "A highly active catalyst, $Ni/Ce-ZrO_{2}=_-Al_{2}O_{3}$, for on-site $H_{2}$ generation by steam methane reforming: pretreatment effect", International Journal of Hydrogen Energy, Vol.28, pp.1387-1392, Dec. 2013. DOI:https://doi.org/10.1016/S0360-3199(03)00029-6
  15. A. I. Tsyganok, T. Tsunoda, S. Hamakawa, K. Suzuki, K. Takehira, "Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides", Journal of Catalysis, Vol.213, No.2, pp.191-203, Jan. 2003. DOI:https://doi.org/10.1016/S0021-9517(02)00047-7
  16. D. Suh, T. Park, J. Kim, K. Kim, "Nickel-alumina aerogel catalysts prepared by fast sol-gel synthesis", Journal of Non-Crystalline Solids, Vol.225, pp.168-172, Apr. 1998. DOI:https://doi.org/10.1016/S0022-3093(98)00039-8
  17. K. Nagaoka, K. Sato, S. Fukuda, H. Nishiguchi, Y. takita, "Oxidation of $Rh/Ce_{0.5}Zr_{0.5}O_{2}$ reduced under mild conditions as an initiator of n-butane oxidative reforming at ambient temperature", Catalysis Communications, Vol.8, pp.1807-1810, Nov. 2007. DOI:https://doi.org/10.1002/cssc.200900194
  18. R. R.-N. Jens, S. Jens, K. N. Jens, "Hydrogen and synthesis gas by steam- and $CO_{2}$ reforming", Advances in Catalysis, Vol.47, pp.65-139, Apr. 2002. DOI:https://doi.org/10.1016/S0360-0564(02)47006-X
  19. S. Xu, X. Wang, "Highly active and coking resistant $Ni/CeO_{2}-ZrO_{2}$ catalyst for partial oxidation of methane", FUEL, Vol.84, No.5, pp. 563-567, Mar. 2005. DOI:https://doi.org/10.1016/j.fuel.2004.10.008
  20. M. King, T. Lee, J. Lee, "Influence of $Ni/CeO_{2}-ZrO_{2}$ catalysts on Methane Autothermal reforming", Korean Chemical Engineering Research, Vol.47, No1, pp. 17-23, Feb. 2009.
  21. S. Tada, M. Yokoyama, R. Kikuchi, T. Haneda, H. Kameyama, "$N_{2}O$ Pulse Titration of $Ni/{\alpha}-Al_{2}O_{3}$ Catalysts: A New Technique Applicable to Nickel Surface-Area Determination of Nickel-Based", Catalysts, The Journal of Physical Chemistry C, Vol.117, pp. 14652-14658, Jun. 2013. DOI:https://doi.org/10.1021/jp404291k
  22. S. Roscher, R. Hoffmann, O. Ambacher, "Determination of the graphene-graphite ratio of graphene powder by Raman 2D band symmetry analysis", Analytical Methods, Vol.11. pp.1224-1228, Jan. 2019. DOI:https://doi.org/10.1039/C8AY02619J
  23. M. G. Calvo, C. J. Gonzalez, B. Rivas, J. I. G. Ortiz, R. L. Fonseca, "Novel Nickel Aluminate-Derived Catalysts Supported on Ceria and Ceria-Zirconia for Partial Oxidation of Methane", Industrial & Engineering Chemistry Research, Vol.56, pp.6186-6197, May 2017. DOI:https://doi.org/10.1021/acs.iecr.7b00986
  24. B. Lin, L. Heng, H. Yin, B. Fang, J. Ni, X. Wang, J. Lin, L. Jiang, "Effects of Using Carbon-Coated Alumina as Support for Ba-Promoted Ru Catalyst in Ammonia Synthesis", Industrial & Engineering Chemistry Research, Vol.58, No.24, pp. 10285-10295, May 2019. DOI:https://doi.org/10.1021/acs.iecr.9b01610
  25. A. Borodzinski, M. Bonarowska, "Relation between Crystallite Size and Dispersion on Supported Metal Catalysts", Langmuir, Vol.13, No.21 5613-5620, Oct. 1997. DOI:https://doi.org/10.1021/la962103u