DOI QR코드

DOI QR Code

Thermoelectric properties of SiC prepared by refined diatomite

정제 규조토로 합성한 탄화규소의 열전특성

  • Pai, Chul-Hoon (Division of Bio-Engineering, Incheon National University)
  • 배철훈 (인천대학교 생명공학부)
  • Received : 2019.12.11
  • Accepted : 2020.04.03
  • Published : 2020.04.29

Abstract

Silicon carbide is considered a potentially useful material for high-temperature electronic devices because of its large band gap energy and p-type or n-type conduction that can be controlled by impurity doping. Accordingly, the thermoelectric properties of -SiC powder prepared by refined diatomite were investigated for high value-added applications of natural diatomite. -SiC powder was synthesized by a carbothermal reduction of the SiO2 in refined diatomite using carbon black. An acid-treatment process was then performed to eliminate the remaining impurities (Fe, Ca, etc.). n-Type semiconductors were fabricated by sintering the pressed powder at 2000℃ for 1~5h in an N2 atmosphere. The electrical conductivity increased with increasing sintering time, which might be due to an increase in carrier concentration and improvement in grain-to-grain connectivity. The carrier compensation effect caused by the remaining acceptor impurities (Al, etc.) in the obtained -SiC had a deleterious influence on the electrical conductivity. The absolute value of the Seebeck coefficient increased with increasing sintering time, which might be due to a decrease in the stacking fault density accompanied by grain or crystallite growth. On the other hand, the power factor, which reflects the thermoelectric conversion efficiency of the present work, was slightly lower than that of the porous SiC semiconductors fabricated by conventional high-purity -SiC powder, it can be stated that the thermoelectric properties could be improved further by precise control of an acid-treatment process.

SiC는 큰 밴드 갭 에너지를 갖고, 불순물 도핑에 의해 p형 및 n형 전도의 제어가 용이해서 고온용 전자부품소재로 활용이 가능한 재료이다. 따라서 국내 부존 규조토의 고부가가치 활용을 위해 정제 규조토로부터 합성한 β-SiC 분말의 열전물성에 대해 조사하였다. 정제한 규조토 중의 SiO2 성분을 카본블랙으로 환원 탄화 반응시켜 β-SiC 분말을 합성하고, 잔존하는 불순물(Fe, Ca 등)을 제거하기 위해서 산처리 공정을 행하였다. 분말의 성형체를 질소 분위기 2000℃에서 1~5시간 소결시켜 n형 SiC 반도체를 제작하였다. 소결시간이 길어짐에 따라 캐리어 농도의 증가 및 입자간의 연결성 향상에 의해 도전율이 향상되었다. 합성 및 산처리한 β-SiC 분말에 내재하는 억셉터형 불순물(Al 등)로 인한 캐리어 보상효과가 도전율 향상에 저해하는 요인으로 나타났다. 소결시간이 증가함에 따라 입자 및 결정 성장과 함께 적층 결함 밀도의 감소에 의해 Seebeck 계수의 절대값이 증가하였다. 본 연구에서의 열전 변환 효율을 반영하는 power factor는 상용 고순도 β-SiC 분말로 제작한 다공질 SiC 반도체에 비해 다소 작게 나타났지만, 산처리 공정을 정밀하게 제어하면 열전물성은 보다 향상될 것으로 판단된다.

Keywords

References

  1. K. Uemura and I. Nishida, Thermoelectric Semiconductors and Their Applications, p.210, Nikkankogyoshinbunsha, 1988, pp.33-37.
  2. Y. Suga(Ed.), Thermoelectric Semiconductors, p.468, Makishyoten, 1966, pp.77-79.
  3. I. B. Cadoff and E. Miller, Thermoelectric Materials and Devices, p.432, Chapman and Hall Ltd., 1960, pp.178-1 DOI: https://dx.doi.org/10.1063/1.3057558
  4. K. Uemura and I. Nishida, Thermoelectric Semiconductors and Their Applications, p.210, Nikkankogyoshinbunsha, 1988, pp.1-7.
  5. K. Koumoto, C. H. Pai, S. Takeda, and H. Yanagida, "Microstructure-controlled Porous SiC Ceramics for High-temperature Thermoelectric Energy Conversion", Proc. of the 8th Inter. Conf. on Thermoelectric Energy Conversion, ECT, Nancy, France, pp.107-112, 1989.
  6. C. H .Pai, "A Refining of Natural Diatomite and Synthesis of SiC Powder", J. Kor. Academia-Industrial Co. Soc.. Vol.19, No.3, pp.312-319, 2017. DOI: https://doi.org/10.5762/KAIS.2017.18.3.312
  7. J. Y. W. Seto, "The Electrical Properties of Polycrystalline Silicon Films", J. Appl. Phys., 46[12], pp.5247-5254, 1975. DOI: https://dx.doi.org/10.1063/1.321593
  8. C. H. Seager and T. G. Castner, "Zero-bias Resistance of Grain Boundaries in Neutron- transmutation-doped Polycrystalline", J. Appl.Phys., 49[7], pp.3879-3889, 1978. DOI: https://dx.doi.org/10.1063/1.325394
  9. G. Baccarani, B. Ricco, and G. Spadini, "Transport Properties of Polycrystalline Silicon Films", J. Appl. Phys., 49[11], pp.5565-5570, 1978. DOI: https://dx.doi.org/10.1063/1.324477
  10. W. S. SEO, C. H. Pai, K. Koumoto, and H. Yanagida, "Microstructure Development and Stacking Fault Annihilation in ${\beta}$-SiC Powder Compact", J. Ceram. Soc. Jpn., 99[6], pp.443-447, 1991. DOI: https://dx.doi.org/10.2109/jcersj.99.443
  11. J. E. Parrott, "Some Contributions to the Theory of Electrical Conductivity, Thermal Conductivity, and Thermoelectric Power in Semiconductors", Proc. Phys. Soc., pp.590-607, 1957.