References
- J. Breeding, II, C. Poor, and D. S. Yuen, Computations of spaces of paramodular forms of general level, J. Korean Math. Soc. 53 (2016), no. 3, 645-689. https://doi.org/10.4134/JKMS.j150219
- A. Brumer and K. Kramer, Paramodular abelian varieties of odd conductor, Trans. Amer. Math. Soc. 366 (2014), no. 5, 2463-2516. https://doi.org/10.1090/S0002-9947-2013-05909-0
- A. Brumer and K. Kramer, Paramodular abelian varieties of odd conductor, arXiv: 1004.4699, 2018.
- A. Brumer, A. Pacetti, C. Poor, G. Tornaria, J. Voight, and D. S. Yuen, On the paramod-ularity of typical abelian surfaces, Algebra Number Theory 13 (2019), no. 5, 1145-1195. https://doi.org/10.2140/ant.2019.13.1145
- M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, 55, Birkhauser Boston, Inc., Boston, MA, 1985. https://doi.org/10.1007/978-1-4684-9162-3
-
V. A. Gritsenko, 24 faces of the Borcherds modular form
$\phi_{12}$ , arXiv:1203.6503, 2012. - V. A. Gritsenko and V. V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebras. II, Internat. J. Math. 9 (1998), no. 2, 201-275. https://doi.org/10.1142/S0129167X98000117
- V. A. Gritsenko, C. Poor, and D. S. Yuen, Borcherds products everywhere, J. Number Theory 148 (2015), 164-195. https://doi.org/10.1016/j.jnt.2014.07.028
- V. A. Gritsenko, C. Poor, and D. S. Yuen, Antisymmetric paramodular forms of weights 2 and 3, to appear in Int. Math. Res. Not. IMRN.
- V. A. Gritsenko, N.-P. Skoruppa, and D. Zagier, Theta blocks, https://math.univlille1.fr/d7/sites/default/files/THET
- T. Ibukiyama and H. Kitayama, Dimension formulas of paramodular forms of squarefree level and comparison with inner twist, J. Math. Soc. Japan 69 (2017), no. 2, 597-671. https://doi.org/10.2969/jmsj/06920597
- T. Ibukiyama, C. Poor, and D. S. Yuen, Jacobi forms that characterize paramodular forms, Abh. Math. Semin. Univ. Hambg. 83 (2013), no. 1, 111-128. https://doi.org/10.1007/s12188-013-0078-y
- C. Poor, J. Shurman, and D. S. Yuen, Siegel paramodular forms of weight 2 and square-free level, Int. J. Number Theory 13 (2017), no. 10, 2627-2652. https://doi.org/10.1142/S1793042117501469
- C. Poor, J. Shurman, and D. S. Yuen, Finding all Borcherds product paramodular cusp forms of a given weight and level, arXiv:1803.11092, 2018.
- C. Poor, J. Shurman, and D. S. Yuen, Nonlift weight two paramodular eigenform constructions, 2018. http://www.siegelmodularforms.org/pages/degree2/paramodular-wt2-prime-sequel/
- C. Poor and D. S. Yuen, Paramodular cusp forms, Math. Comp. 84 (2015), no. 293, 1401-1438. https://doi.org/10.1090/S0025-5718-2014-02870-6
- C. Poor and D. S. Yuen, Paramodular Forms of Weight 2, Prime Levels to 600, Math. Comp. 84 (2015), no. 293, 1401-1438. https://doi.org/10.1090/S0025-5718-2014-02870-6
- B. Roberts and R. Schmidt, On modular forms for the paramodular groups, in Automorphic forms and zeta functions, 334-364, World Sci. Publ., Hackensack, NJ, 2006. https://doi.org/10.1142/9789812774415_0015
- B. Roberts and R. Schmidt, Local newforms for GSp(4), Lecture Notes in Mathematics, 1918, Springer, Berlin, 2007. https://doi.org/10.1007/978-3-540-73324-9
- G. Shimura, On the Fourier coeffcients of modular forms of several variables, Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. II 1975 (1975), no. 17, 261-268.
- N.-P. Skoruppa and D. Zagier, A trace formula for Jacobi forms, J. Reine Angew. Math. 393 (1989), 168-198. https://doi.org/10.1515/crll.1989.393.168