Browse > Article
http://dx.doi.org/10.4134/JKMS.j190179

NONLIFT WEIGHT TWO PARAMODULAR EIGENFORM CONSTRUCTIONS  

Poor, Cris (Department of Mathematics Fordham University)
Shurman, Jerry (Department of Mathematics Reed College)
Yuen, David S. (Department of Mathematics University of Hawaii)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.2, 2020 , pp. 507-522 More about this Journal
Abstract
We complete the construction of the nonlift weight two cusp paramodular Hecke eigenforms for prime levels N < 600, which arise in conformance with the paramodular conjecture of Brumer and Kramer.
Keywords
Paramodular cusp form; Borcherds product;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Breeding, II, C. Poor, and D. S. Yuen, Computations of spaces of paramodular forms of general level, J. Korean Math. Soc. 53 (2016), no. 3, 645-689. https://doi.org/10.4134/JKMS.j150219   DOI
2 A. Brumer and K. Kramer, Paramodular abelian varieties of odd conductor, Trans. Amer. Math. Soc. 366 (2014), no. 5, 2463-2516. https://doi.org/10.1090/S0002-9947-2013-05909-0   DOI
3 A. Brumer and K. Kramer, Paramodular abelian varieties of odd conductor, arXiv: 1004.4699, 2018.
4 A. Brumer, A. Pacetti, C. Poor, G. Tornaria, J. Voight, and D. S. Yuen, On the paramod-ularity of typical abelian surfaces, Algebra Number Theory 13 (2019), no. 5, 1145-1195. https://doi.org/10.2140/ant.2019.13.1145   DOI
5 M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, 55, Birkhauser Boston, Inc., Boston, MA, 1985. https://doi.org/10.1007/978-1-4684-9162-3
6 V. A. Gritsenko, 24 faces of the Borcherds modular form $\phi_{12}$, arXiv:1203.6503, 2012.
7 V. A. Gritsenko and V. V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebras. II, Internat. J. Math. 9 (1998), no. 2, 201-275. https://doi.org/10.1142/S0129167X98000117   DOI
8 V. A. Gritsenko, C. Poor, and D. S. Yuen, Borcherds products everywhere, J. Number Theory 148 (2015), 164-195. https://doi.org/10.1016/j.jnt.2014.07.028   DOI
9 V. A. Gritsenko, C. Poor, and D. S. Yuen, Antisymmetric paramodular forms of weights 2 and 3, to appear in Int. Math. Res. Not. IMRN.
10 T. Ibukiyama, C. Poor, and D. S. Yuen, Jacobi forms that characterize paramodular forms, Abh. Math. Semin. Univ. Hambg. 83 (2013), no. 1, 111-128. https://doi.org/10.1007/s12188-013-0078-y   DOI
11 C. Poor, J. Shurman, and D. S. Yuen, Siegel paramodular forms of weight 2 and square-free level, Int. J. Number Theory 13 (2017), no. 10, 2627-2652. https://doi.org/10.1142/S1793042117501469   DOI
12 C. Poor, J. Shurman, and D. S. Yuen, Finding all Borcherds product paramodular cusp forms of a given weight and level, arXiv:1803.11092, 2018.
13 C. Poor, J. Shurman, and D. S. Yuen, Nonlift weight two paramodular eigenform constructions, 2018. http://www.siegelmodularforms.org/pages/degree2/paramodular-wt2-prime-sequel/
14 C. Poor and D. S. Yuen, Paramodular cusp forms, Math. Comp. 84 (2015), no. 293, 1401-1438. https://doi.org/10.1090/S0025-5718-2014-02870-6   DOI
15 C. Poor and D. S. Yuen, Paramodular Forms of Weight 2, Prime Levels to 600, Math. Comp. 84 (2015), no. 293, 1401-1438. https://doi.org/10.1090/S0025-5718-2014-02870-6   DOI
16 B. Roberts and R. Schmidt, On modular forms for the paramodular groups, in Automorphic forms and zeta functions, 334-364, World Sci. Publ., Hackensack, NJ, 2006. https://doi.org/10.1142/9789812774415_0015
17 B. Roberts and R. Schmidt, Local newforms for GSp(4), Lecture Notes in Mathematics, 1918, Springer, Berlin, 2007. https://doi.org/10.1007/978-3-540-73324-9
18 G. Shimura, On the Fourier coeffcients of modular forms of several variables, Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. II 1975 (1975), no. 17, 261-268.
19 N.-P. Skoruppa and D. Zagier, A trace formula for Jacobi forms, J. Reine Angew. Math. 393 (1989), 168-198. https://doi.org/10.1515/crll.1989.393.168
20 V. A. Gritsenko, N.-P. Skoruppa, and D. Zagier, Theta blocks, https://math.univlille1.fr/d7/sites/default/files/THET
21 T. Ibukiyama and H. Kitayama, Dimension formulas of paramodular forms of squarefree level and comparison with inner twist, J. Math. Soc. Japan 69 (2017), no. 2, 597-671. https://doi.org/10.2969/jmsj/06920597   DOI