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NONLIFT WEIGHT TWO PARAMODULAR EIGENFORM
CONSTRUCTIONS

Cris POOR, JERRY SHURMAN, AND DAvVID S. YUEN

ABSTRACT. We complete the construction of the nonlift weight two cusp
paramodular Hecke eigenforms for prime levels N < 600, which arise in
conformance with the paramodular conjecture of Brumer and Kramer.

1. Introduction

We construct all the paramodular nonlift newforms whose existence is sug-
gested in [16], thus completing that article. That article and this one provide
evidence for the paramodular conjecture of A. Brumer and K. Kramer. A suit-
able paramodular form f of level IV is a cuspidal, nonlift Siegel paramodular
newform of degree 2, weight 2, and level IV with rational Hecke eigenvalues. The
paramodular cusp form space is denoted So(K(N))—the subscript 2 indicates
the weight, K(N) denotes the paramodular group of degree 2 and level N, and
the degree is omitted from the notation because all paramodular forms in this
article have degree 2. Newforms on K(V) are by definition Hecke eigenforms
orthogonal to the images of level-raising operators from paramodular forms of
lower levels [18,19]. The lift space in Sa(K(N)) is Grit(J5'5), the Gritsenko
lift of the Jacobi cusp form space of weight 2 and index N. A partial statement
of the paramodular conjecture, sufficient for the purposes of this article, is:

Let N be a squarefree positive integer. Let Ay be the set of
isogeny classes of abelian surfaces A/Q of conductor N with
EndgA = Z, and let Py be the set of suitable paramodular
forms f of level N, up to nonzero scaling. There is a bijection
An <— Py such that

L(A, s,Hasse-Weil) = L(f, s, spin).

Initially stated in [2], the paramodular conjecture is now modified in Section 8
of [3] to capture phenomena that can arise for some N divisible by a square,
after F. Calegari pointed out an oversight in the earlier statement.
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We summarize previous work and state the main theorem of this article.
In [16], the first and third authors of this article studied S3(K(N)) for prime
levels N < 600, proving by algorithm that So(K(N)) = Grit(J5'x) for all
such N except the cases N = 277,349, 353, 389, 461, 523, 587, pr7ecise1y the
primes N < 600 for which relevant abelian surfaces exist [2]. Also, [16] showed
that in these cases there is at most one nonlift dimension, lying in the Fricke
plus space, except that for N = 587 there is at most one Fricke plus space
nonlift dimension and at most one Fricke minus space nonlift dimension. We
refer to these last two settings as the cases N = 587*. For each case N, con-
ditionally on the existence of the nonlift, the newform fx is known (see the
website [17] for the article [16]), as are Euler factors of L(fy, s, spin) for small
primes [16]. Further, [16] showed that S,(K(277)) contains a nonlift dimension
Cfa77, by constructing it. In [9], V. Gritsenko and the first and third authors
of this article constructed a nonlift in So(K(587))~, using a Borcherds prod-
uct. In [4], A. Brumer and A. Pacetti and G. Tornarfa and J. Voight and the
first and third authors of this article showed the equality of L(fn,s,spin) and
L(An, s,Hasse-Weil), for N = 277,353,587, citing this article for the exis-
tence of the N = 353 nonlift. We will describe the N = 353 nonlift in detail in
Section 4. In this article we call N = 277,349, 353, 389, 461, 523, 587F the out-
standing levels, even though nonlifts are already constructed for N = 277,587~
This article describes at least one nonlift construction for each outstanding
level. All but two outstanding levels have nonlift Borcherds products; con-
structing nonlifts at the two that do not, N = 461,587%, requires tracing
methods. In [13], the authors of this article studied squarefree composite levels
N < 300, showing that there is one Fricke plus space nonlift dimension for
N = 249,295 and otherwise no nonlifts. In this article, the adjective outstand-
ing doesn’t include these two composite levels, only the prime levels from above,
but our main theorem does include them. So altogether our main theorem is
as follows.

Theorem 1.1. The following dimensions are established.

| N [ dimIg dimS(K(V)* dimSy(K(N))~ |

249 5 6 0
277 10 11 0
295 6 7 0
349 11 12 0
353 11 12 0
389 11 12 0
461 12 13 0
923 17 18 0
587 18 19 1

With the asserted dimensions already established as dimension upper bounds
in [16], the proof of Theorem 1.1 is a matter of constructing a nonlift at each
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level, including both of 587%. As just discussed, constructions already exist for
the outstanding levels N = 277,587~ and for the composite levels N = 249, 295,
but the results in Theorem 1.1 that a nonlift Fricke plus space dimension exists
for N = 349, 353,389,461, 523,587 are new. This article proves Theorem 1.1
by giving in Section 4 at least one construction for each relevant level N #
461,587%, and by giving in Section 5 constructions for levels N = 461,5877.
More details of the nonlift computations are given at the website [15] for this
article. In particular the website gives an expression for each outstanding
nonlift eigenform fy as a linear combination of a nonlift Borcherds product
and a Gritsenko lift, excepting levels N = 461,587". These formulas for N =
277,349, 353, 389, 523 are new to this article.
This article further completes [16] as follows.

Theorem 1.2. The conjectured nonlift eigenform formulas fny = Qn/Ln
of [16] and its website [17] are correct for N = 349,353, 389,461, 523, 587+.
Here Qn lies in S4(K(N)) and Ly in Grit(J5'5).

We will prove Theorem 1.2 in Section 6.

Having a nonlift eigenform f expressed either as a linear combination of
a nonlift Borcherds product and a Gritsenko lift or as a quotient Q/L of a
quadratic form in Gritsenko lifts by a linear form in Gritsenko lifts allows the
computation of comparatively many f-eigenvalues. In particular, [4] used this
idea to establish the equality of L-functions in the paramodular conjecture
for N = 277,353,587~

Beyond proving Theorem 1.1 and Theorem 1.2, this article aims to make
known our various nonlift construction methods. Computing a space of para-
modular forms first requires good estimation methods to get a dimension upper
bound that we believe is tight, and then, separately, it requires constructions
of nonlifts to achieve a matching dimension lower bound. Although nonlift
Borcherds product paramodular cusp forms are finitely determined, the search-
spaces for their constructions are enormous, making naive searches infeasible,
and so we hope that the methods described in this article will be useful. Some
of them give remarkably simple constructions in light of the complexity of the
situation, and they showcase the versatility of theta blocks, particular Jacobi
forms due to V. Gritsenko, N.-P. Skoruppa, and D. Zagier [10] to be discussed
below.

We thank the referee for many helpful comments.

2. Background: Paramodular forms, Atkin—Lehner eigenforms,
theta blocks

The background section of [13] introduces terminology and notation for
paramodular forms and for Fricke and Atkin-Lehner involutions. Section 4
of [14] introduces terminology and notation for theta blocks. Here we repeat
some of this background more briefly.
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The degree 2 symplectic group Sp(2) of 4 x 4 matrices is defined by the
condition ¢g'Jg = J, where the prime denotes matrix transpose and J is the
skew form [(1) _(1)] with each block 2x 2. The Siegel upper half space Ho consists
of the 2 x 2 symmetric complex matrices that have positive definite imaginary

part. Elements of Hy are notated

and also, letting e(w) = €*™ for w € C, we use throughout this article the
notation

q:e(T)7 ¢ :e(z)’ 3 :e(w)'

The real symplectic group Spy(R) acts on Hs via fractional linear transfor-
mations, g(Q) = (aQ + b)(cQ +d)~* for g = [24], and the Siegel factor of
automorphy is j(g, ) = det(cQ + d).

For any positive integer N, the paramodular group K(N) of degree 2 and
level N is the group of rational symplectic matrices that stabilize the column
vector lattice Z® 7Z @& Z & NZ. In coordinates,

*  *«N | % *
K(N) ={ : *i‘;\/_ I */*N € Spy(Q) : all * entries integral}.
*N  «N | «N  x

The upper right entries of the four subblocks are “more integral by a factor
of N” than implied immediately by the definition of the paramodular group
as a lattice stabilizer, but the extra conditions hold because the matrices are
symplectic.

Fix an integer k. Any function f : Hy — C and any real symplectic
matrix g € Spy(R) combine to form another such function through the weight k
operator, f[g]x(2) = j(g,Q2) " f(g(2)). A Siegel paramodular form of weight k
and level N is a holomorphic function f : Hy — C that is [K(V)]-invariant;
the Kocher Principle says that the function f[g]x is bounded on {Im(€) >
Y,} for all g € Sp,(Q) and all positive 2 x 2 real matrices Y,. The space of
weight k, level N Siegel paramodular forms is denoted My (K(N)). Siegel’s
® map takes any holomorphic function that has a Fourier series of the form
f(Q) = >, alt; f)e((t,Q)), summing over matrices t = [}, ] with n,m €
ﬁzzo and r € ﬁZ for some positive integer M and with nm — 72 > 0, to the
function (®f)(7) = limy—ico f([§ 0]). A Siegel paramodular form f is a cusp
form if ®(f[g]x) = 0 for all g € Sp,(Q). The space of weight k, level N Siegel
paramodular cusp forms is denoted Si(K(N)). The dimension of S(K(V)) is
known for squarefree N and k& > 3 [11], but no dimension formula is known
for k = 2.
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Every paramodular cusp form of weight k& and level N has a Fourier expan-

sion
F@) =Y altfe((t, ),
teXs(N)
summing over the index set

%(N) ={[Jo o/¥]  nom € Zao,r € Z,4nmN — 12 > 0},

and with (¢, Q) = tr(tQ). The Fourier-Jacobi expansion of a paramodular cusp
form is
£ =" bm(f)(r2)¢™N,
m>1
with Jacobi coefficients

(1) Sm(f)(7,2) = > a(t; 1)g"¢"

t:[rT/Lz ;/zﬂ €x2(N)

Each Jacobi coefficient ¢, (f) lies in the space Ji')"y of weight &, index mN
Jacobi cusp forms, whose dimension is known [5,21]. For the theory of Jacobi
forms, see [5,7,21].

We review Atkin—Lehner involutions, including the Fricke involution. Let N
be a positive integer, and let ¢ be a positive divisor of N such that ged(c, N/c) =
1. In this article N is always squarefree, so ¢ can be any positive divisor of V.
For any integers «, 3,7, ¢ such that adc—fvyN/c = 1, an elliptic c-Atkin-Lehner

matrix is

o — 1 [ ac B }

Vel AN dc |”

Especially, for ¢ = 1 we may take a,§ = 1 and B,7 = 0 to get the identity
matrix, and for ¢ = N we may take o,6 = 0 and 3,7 = F1 to get the usual
Fricke involution matrix ﬁ [¥ 0] Let I'o(N) denote the level N Hecke
subgroup of SLy(Z). By quick calculations, the inverse of any «. is another @,
any product &.c lies in T'o(N) and so the set of all @&, lies in the coset T'o(N)«,
and this coset also lies in the set of all &., making them equal. Consequently,
a. squares into I'o(N) and normalizes T'g(N). Now, with an asterisk and a
box-plus denoting the matrix transpose-inverse and direct sum operators, a
paramodular c-Atkin-Lehner matrix is

o _|la 0

pe =0, Bae. = { 0 o }

The inverse of any pu. is another fi., and any product f.u. lies in K(N), so
that the set of all fi. lies in the coset K(N)u. and they all give the same ac-
tion on paramodular forms, although now the containment is proper. Again
e squares into K(V), and a blockwise check shows that u. normalizes K(N).

For ¢ = 1 we take uy = 14. For ¢ = N, the paramodular Fricke involution

is v = (9N B[ s (28] [#Y 3] The space Si(K(N)



512 C. POOR, J. SHURMAN, AND D. YUEN

decomposes as the direct sum of the Fricke eigenspaces for the two eigenval-
ues =1, Sp(K(N)) = Si(K(N))T @ Si.(K(N))~. More generally the paramod-
ular Atkin-Lehner involutions satisfy [u.]x[pe]e = [pee]r for coprime ¢ and é,
and so they commute. Thus S;(K(N)) decomposes as a direct sum of spaces
Sk(K(N))¥ where v is a vector of + entries indexed by the prime divisors of
the level N. Such a vector is called an Atkin—Lehner signature.

We quickly review some basic terminology of theta blocks. Let 7 be a variable
from the complex upper half plane and let z be a complex variable. With ¢
and ( as before, the Dedekind eta function 7 and the odd Jacobi theta function
9 are

n(r) =g"* (1 =g,

n>1
19(7’ z) _ Z(_l)nq(7z+1/2)2/2<n+1/2

nez

=g/ - [ -q" 00 - q" ¢ - g").

n>1

Here 7 is a Jacobi cusp form of weight 1/2 and index 0 and a multiplier de-

noted €, and ¥ is a Jacobi cusp form of weight 1/2 and index 1/2 and a multiplier

e3vy where vy is a character of the Heisenberg group [7]. For any r € Z>1,

define 9, € J7)5 2 5 (3v%;) to be U,.(T,z) = I(7,72), so that

Op(1,2) /() = ¢/ = ) T = ¢ ¢ (A= q¢).

n>1

A theta block is a meromorphic function of the form

TB(r, ) = TB(¢) (7, 2) = n(r)? O [[(0: (7, 2)/u(7))?,

r>1

where ¢ : Z — Z is even and finitely supported. The theta block of ¢ has the
product form

TB(r o) =*(Q) J[ (-q'¢10, A= 3o,

n>1,rez reZ
in which b(¢) = [,51(¢"/? = ¢7/?)?(") is the baby theta block, or
_ . . 1
WO =¢PIIC =D B=2) re(r).
r>1 r>1

The weight of the theta block is k = $¢(0) and the index is N = § > or>1 r2p(r),
so that TB(p) € JPae (e 4vgP).
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3. Overview of computing a space of paramodular forms

Let S denote any Fricke eigenspace or Atkin-Lehner eigenspace of S, (K(N)).
To describe our computational method for studying S in weight k£ = 2, intro-
duce for any positive integer d the notation

S(d) ={S-elements with vanishing first d — 1 Jacobi coefficients},
S[d] ={S-elements truncated to the first d Jacobi coefficients}.

Thus there is an exact sequence
0—Sd+1) — S — S[d| — 0.

In broad strokes, our methodology to study S in weight 2 is as follows.

(1) Show for some nonnegative integer d that S(d + 1) = 0, i.e., every
element of S is determined by its first d Jacobi coefficients.

(2) Compute a small superspace J of S[d] (specifics will be given below).
We can identify elements of S uniquely as linear combinations of our
basis of J.

(3) Show that dimS = dim 7, and span S in the process, by constructing
that many linearly independent elements in S.

This section amplifies the outline just given, explaining why the work can be
carried out in a prime characteristic p, and saying more about parts (1) and (2).
Part (3) is carried out for the outstanding levels of this article in Sections 4
and 5 to follow.

The methods described in the previous paragraph are facilitated by work-
ing in some prime characteristic p, rather than in characteristic 0; as will be
explained below, this does not lose any dimensions. We describe the transition
from characteristic 0 to characteristic p. Continue to let S denote any Fricke
eigenspace or Atkin-Lehner eigenspace of Si(K(N)), and let J{"P denote the
space of weight k, index m Jacobi cusp forms for any m. Usiné the Fourier—
Jacobi expansions of paramodular cusp forms, we view two maps of complex
vector spaces as containments for simplicity, with C* indexed by X5(N) in the

next display and with the Fourier series of elements of Ji"'% indexed by the

matrices {7]}2 ;/]ﬂ of Xo(N) (cf. (1) in Section 2),

oo
Sc Pk cc>.
j=1

For any vector subspace V of C™, let V(Z) = V NZ*>. For any prime p, let
R, : 2% — F° be the reduction modulo p map. Define a map V — V,
from the set of vector subspaces of C* to the set of vector subspaces of F* by
reducing the integral elements of the input vector space,

Vp = Ry(V(Z)), V a vector subspace of C*.
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From the previous two displays,
)
Sy C EPUR)p CF.
j=1
Extending the notation from above, again for any positive integer d,
Sp(d) ={elements of S, with vanishing first d — 1 Jacobi coefficients in F, },
S|[d], ={reductions modulo p of the integral elements of S[d|},
and we will show at the end of this section that because S has an integral basis,
dimc S(d) < dimg, Sp(d),
dimc S[d] = dimg, S[d],,.

Thus, establishing that S,(d) = 0 establishes that S(d) = 0, and bounding
dim S[d], gives the same bound of dim S[d]. Here the spaces S,(d) and S[d],,
which we use, have different definitions from the spaces S(d), and S,[d], which
we do not.

For the first part of our three-part method in weight 2, the methods of [1,13]
let us attempt to show for a given d that S(d) = 0 or S,(d) = 0, where S is
either Fricke eigenspace of Sa(K(N)), or even all of So(K(N)). From [16] we
already know that Sp(K(NN))T is determined by the first two Fourier—Jacobi
coefficients for each outstanding level, and so we may take d > 2 in this article.

For the second part of our method, the Jacobi restriction method [1,12,13]
gives a superspace J of S[d] or S[d], that provides a good upper bound of
dim S[d] or dimS[d],. The space J is a space of finite sequences of Jacobi
forms whose Fourier coefficients altogether satisfy the linear relations generi-
cally required of the Fourier coeflicients of a paramodular Atkin—Lehner eigen-
form. Specifically, let v denote either a Fricke eigenvalue or a vector of Atkin—
Lehner eigenvalues, and let S¥ denote the corresponding Fricke or Atkin-Lehner
eigenspace of Si(K(NN)). Jacobi restriction runs with d as a parameter, return-
ing a basis of a finite-dimensional complex vector space J; of truncated formal
Fourier—Jacobi expansions such that

d
S°ld c Ji c @Ik
j=1

Jacobi restriction is experimentally remarkable in that the equality SV[d] = J
tends to hold for small values of d. An additional parameter, dety.x, bounds
the Fourier coefficient index determinants in the calculation, thus making the
method an algorithm; this parameter must be chosen so that each space J} 7%
with j < d is determined by the Fourier coefficients whose indices satisfy the
determinant bound. For simplicity we suppress detmax from the notation J7,
along with the weight k£ and the level V. In the basis of J; given by Ja-
cobi restriction, each basis element is represented as a finite collection of data
a(n,r,m) where 1 <m < d and 0 < nmN — r%/4 < dety.y; the truncation of
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any paramodular cusp form f € Si(K(N)) to its first d Jacobi coefficients is
n r/2
r/2 mN
restriction also can be run modulo p, in which case it returns a basis of a finite
dimensional vector space J,, over F, such that

determined by its Fourier coefficients a({ } ; f) for such n,r,m. Jacobi

d
S'ldly € T4 < DU
j=1

Here J7, is different from (7;), but contains it. For this article, we already
have a tight dimension bound dim Sy(K(N))* < dim J5'37 + 1 from [16]; how-
ever, Jacobi restriction is still required in Section 5 to construct a small su-
perspace jg;” of S(K(2N))~*[5], for N = 461,587 in order to extend our
Fourier coefficient computations out to the fifth Fourier-Jacobi coefficient.

The third part of our method is the main substance of this article. We must
construct a weight 2 nonlift at each outstanding level N except N = 277,587,
where nonlifts are already constructed. In Section 4 we construct nonlifts by
constructing Borcherds products at level N. In Section 5 we address the levels
where no Borcherds product exists by tracing level 2N Borcherds products
down to level N.

Let p be prime. To end this section we prove the inequality dim¢ S(d) <
dimg, Sp(d) and the equality dimc S[d] = dimg, S[d], for any d > 1, as stated
above. The key is that reducing a saturated lattice modulo p does not decrease
its dimension, as follows.

Lemma 3.1. Let M C Z*° be a Z-module of finite rank. Suppose that M
is saturated, meaning that the general containment spanQ(M) NZ> D> M is
equality,

spang (M) NZ> = M.
Let p be prime, and let M, C F° denote the image of M under reduction
modulo p, a vector space over |,. Then rankz, M = dimg, M.

Proof. Consider a basis {v1, ..., v, } of M. The corresponding set of reductions,
{vip,---sVrp}, spans M,. Consider any linear relation over F, among the
reductions, ), ¢; pv;, = 0. The relation gives a congruence ), ¢;v; = 0 mod p
in Z°°, and so the vector ) . (c;/p)v; lies in spang (M )NZ>, which by hypothesis
is M, which is @, Zv;. So each ¢; lies in pZ, and the linear combination over [,
is trivial. Thus {v1 p,..., v} is a basis of M. O

Now, let M = S(Z) = SNZ>. Because S has an integral basis by [20], M is
a saturated module with dim¢ S = rankz M. We have rankz M = dimg, M,
by the lemma, and M, = S,. The previous three equalities give dim¢ S =
dimg, Sp, proving that for d = 1 the inequality dimc S(d) < dimg, S,(d) holds
and is in fact equality. We complete the argument by proving the inequality
for d > 2 and the equality dim¢ S[d] = dimg, S[d], for d > 1. Consider any
such d. Because S has an integral basis, the projection map from S to S[d] is
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defined over Z, and hence so are its kernel and image. That is, S(d 4+ 1) and
S[d] have integral bases. Consequently the lattices M(d+ 1) = S(d + 1) N Z*
and M[d] = S[d] NZ> have respective ranks dim¢ S(d+ 1) and dime S[d], and
they are saturated. By the lemma, their ranks equal the dimensions of their
reductions M(d + 1), and M]|d],. Because M(d + 1), lies in S,(d + 1), this
gives the desired inequality, dimc S(d) < dimg, S,(d), with d + 1 in place of d,
ie., for all d > 2. And because M[d], = S[d],, we have the desired equality as
well, dimg S[d] = dimg, S[d],.

4. Jacobi form constructions for Borcherds products

Borcherds products are a source of nonlift paramodular forms, although
some Borcherds products are lifts. The theory of Borcherds products for
paramodular forms is given by V. Gritsenko and V. Nikulin in [7]. A Borcherds
product takes the form f = Borch(y)) where ¢ € JBV"}\‘,' is a weight 0 weakly
holomorphic Jacobi form. Theorem 3.3 of [8], which in turn is quoted from
[6,7] and relies on the work of R. Borcherds, gives sufficient conditions for a
Borcherds product to be a paramodular Fricke eigenform in My (K(NV)); see
also Section 7 of [13].

One source of weight 0 weakly holomorphic Jacobi forms ¢ is the contain-
ment, J{5 Py /A" C Iy for € Zx1, with A the discriminant function from
elliptic modular forms, a weight 12 cusp form. In particular, for all outstand-
ing levels except N = 461,587%, there exist Jacobi forms ¢ € J{5°% /A having
nonlift Borcherds products in Sy(K(N)) (this statement makes no reference to
the squarefree composite levels N = 249,295). For N = 587, a Jacobi form
Y = ¢|Va/¢+ 1P with ¢ a theta block in J5'58; and 1, € J{y°x /A has a nonlift
Borcherds product in S3(K(N)); here V5 is the index-raising operator of [5],
page 41, which takes weakly holomorphic Jacobi forms to weakly holomorphic
Jacobi forms, as noted tacitly in [7]. These nonlifts are shown at [15], and they
prove Theorem 1.1 for N # 249,295,461,587F. A Jacobi form ¢ € J5;°% /A?
also has a nonlift Borcherds product in S2(K(587))~, but this is not shown at
the website. A drawback of creating Jacobi forms by the method of this para-
graph is that they tend to be long linear combinations of a basis of J{y°x /A,
and their coefficients tend to be rational numbers with large numerators and
denominators. Although they establish nonlift dimensions, we sought to cre-
ate nonlifts from more simply expressed Jacobi forms in order to make further
computations more efficient.

A second source of weight 0 weakly holomorphic Jacobi forms ¥ is the infla-
tion method. This method builds 1 from a combination of two sums, one that
involves the V5 raising operator from the previous paragraph and a second that
involves inflations (to be explained below),

=Y i(¢1ilVa)/dri+ Y BiO;/¢2;. all oy, B € L.

i=1 =1
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Here the ¢ ; and the ¢5 ; and the ©; are basic theta blocks, by which we mean
theta blocks that are weakly holomorphic Jacobi forms of integral weight and
level. Each theta block ¢; ; lies in J‘,g’,'}\‘,', has g-vanishing order v;;, and has
baby theta block by ;(¢) such that by ;(¢) | b1(¢?); thus the first sum in the
previous display lies in JE’{'J]\‘,' by Theorem 4.2 of [14]. Each theta block ¢ ;
lies in JZV:; n for some r; and has g-vanishing order v, ; and baby theta block
bs,;(¢), and each theta block ©; lies in JX'(I:?]-H)N and has ¢-vanishing order

77; and baby theta block b;(¢), and by j(¢) | b;(¢); thus the second sum in the
previous display lies in J BV}\} by Lemma 4.6 of [14]. The property that the baby
theta block of ©; is a multiple of the baby theta block of ¢3 ; makes ©; what
we call an inflation of ¢2 ; [9]. Some special cases of the inflation method are
as follows.

e Case 1. n =0, so that ¢ = 31" | a;(¢i|V2)/¢;, and furthermore all v;
are 1.

e Case 2. (m,n) = (1,1) with one ¢, having ¢-vanishing order v € {1,2},
and ¢ = (=1)"(¢|Va)/é + O/$. Here § is usually £1. The first term
of 1 determines r = 1 in the second.

e Case 3. (m,n) = (0,1), so that v = ©/¢. Usually (v,7) = (1,2) or
(v,0) =(2,2).

The inflation method provides a second proof of Theorem 1.1 for each level
N # 461,587%, including the squarefree composite levels N = 249,295. The
table in Figure 1 shows the method of constructing a relevant Jacobi form
that gives rise to a nonlift Borcherds product. At level N = 277, the Case 1
and Case 2 methods produce the same nonlift Borcherds product, its leading
Jacobi coefficient in J3'57, while the Case 3 method produces a different nonlift
Borcherds product, its leading Jacobi coefficient in J5'5%, .

| N [ Casel | Case 2 \ Case 3 \

249 r0.9) = (2,2.2)
277 || m=3 | (7)) =(1,2), B=—1]| (rnv,0)=(22,2)
295 (rv,0) = (2,2,2)
349 m = 22

353 || m=3 | (ni) =(1,2), B=—1

389 9) = (1,2), B=1

523 m = 52

587~ (n,7) = (2,2), B =1

FIGURE 1. Inflation method Jacobi form constructions

To convey a tangible sense of inflation method nonlift eigenform construc-
tions, we illustrate the Cases 1 and 2 constructions of the level 353 suitable
paramodular form f353. The two constructions use theta blocks to create the
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same weakly holomorphic Jacobi form ¢ of weight 0 and index 353; this Jacobi
form has a nonlift weight 2, level 353 paramodular form Borcherds product
Borch(), and the Borcherds product linearly combines with Gritsenko lifts
of further theta blocks to make the sought nonlift eigenform f353. For theta
blocks ¢1, @2, ¢3, P, © to be described below, the Cases 1 and 2 constructions
of the weakly holomorphic Jacobi form v are

b= nVa  2[Vo  dslVa 9V O
$1 b2 b3 -

As for the theta blocks being used here, recall from Section 2 that n(7) and
9(7, z) denote the Dedekind eta function and the odd Jacobi theta function, and
Iy (7, 2) = V(7,7r2) for r > 1. Then, with 0° and r¢ abbreviating n° and (9,./n)®,

#1 = 0*2231415161 719t 11119

b = 011224617191 111131151,

b3 = 0112132415161 71141191,

¢ = 0122134617113 141 151,

O =0%1222324252627'8'9210% 11112113141 151,

For instance, ¢1(7,2) = (1) %[, 544 156701110 V(7:72). All five of these
theta blocks have weight 2, and the first four have index 353 while the last
has index 706. The sought nonlift eigenform f355 is a linear combination of
Borch(v) and a Gritsenko lift,

11
f353 = —11B01“Ch(’(/J) + Z C; Grit(q’;i)7
i=1

where (¢1,...,¢c11) = (2,1,-2,4,2,0,—6,—-7,0,—5,—1) and the é; are more
theta blocks,

$1 = 0*3242517210M 121171, by = 01314361 718110112 16",
b3 = 0*223'4'52719113'18! b4 = 0%223'415'6' 7191111 19",
b5 = 0°2231415'811012214", b = 042231416 718110%18",
d7 = 022351719110 111121 13", bs = 0%224%6%7110' 11118,

P9 = 0%224'51628'10' 1415, d10 = 041221324251 7124

$11 = 0%122'314161 71131141 15",
The weight 0 Jacobi form formula ¢ = (¢1|V2)/d1 — (Pp2|Va)/d2 — (d3|V2)/¢3
gives the Borcherds product formula Borch(v) = Grit(¢o) Grit(¢s)/ Grit(d)}),
and so the nonlift eigenform formula fs53 = —11Borch(vy) + leil ¢; Grit(¢;)

gives a construction f3s3 = @Q/L of the eigenform as a quotient of a quadratic
form in Gritsenko lifts over a linear form in Gritsenko lifts. Such a quotient
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construction is crucial in that it lets us compute many eigenvalues (over a hun-
dred), enough for the level 353 modularity proof in [4], though that proof used a
more complicated construction f3s3 = Q/L than the one that we have obtained
here. The nonlift eigenform formula f353 = —11Borch(v)) + leil ¢; Grit(¢;)

also shows that f353 is congruent modulo 11 to a Gritsenko lift.

5. Levels N = 461,567+

We complete the proof of Theorem 1.1 by constructing nonlifts at the two
outstanding levels that lack nonlift Borcherds products.

For an elliptic Atkin—Lehner matrix «. at level N M, understanding that
¢ | NM and ged(e, NM/c) = 1, if ¢ divides N, then «. is also an Atkin—
Lehner matrix at level NV, and so the same is true for the corresponding
paramodular Atkin-Lehner matrix p.. This shows that for any prime divi-
sor p of N such that ged(p, NM/p) = 1, any p-Atkin—Lehner eigenform f in
Sk(K(NM)) traces down to a p-Atkin-Lehner eigenform in Si(K(N)). In-
deed, if K(NM)K(N) = ||, K(NM)h;, then the traced down image of f is
TD f = %", flhi]k, and taking a p-Atkin-Lehner matrix s, at level N that is
also a p-Atkin-Lehner matrix at level NM gives, because f[uplr = €pf and
K(NM)K(N) = ||, K(NM )y, by,

(TD f)[uplr = Zf[upuglhmp]k =6 TD f.

Especially we may take N = 461,587 and M = 2, and trace down a level 2NV
Atkin—Lehner eigenform having 2-eigenvalue —1 and N-eigenvalue 1, obtaining
a level N Fricke plus form. This is our route to constructing a nonlift at the
outstanding levels that lack nonlift Borcherds products.

For levels N = 461, 587, the methods of [14] show that there is no nonlift
Borcherds product in So(K(N))T. To construct nonlifts in these two cases,
we begin by constructing Borcherds products in So(K(2N))~. Again by the
methods of [14], there exist one Borcherds product in So(K(922))~ and three in
S2(K(1174))~, having integral Fourier coefficients, some of which we can com-
pute (see [15]). Polarizing the Borcherds products creates Atkin—Lehner eigen-
forms f, " in So(K(2N))~F (i.e., the polarization of a Borcherds product f is
f = fluzla + flunl2 — flu2pnn]z, with pe, py-eigenvalues —1,1), again having
integral Fourier coefficients, and the eigenforms trace down to Sa(K(N))™, the
tracing down also preserving the integrality of the Fourier coefficients; tracing
down is described in [13]. However, we do not have enough Fourier coefficients
of our eigenforms to compute many Fourier coefficients of their traced down
images, so we need to produce more coefficients first. We do so in a finite
characteristic p. Level 2N Jacobi restriction with p = 12347, with d = 5,
and with dety.x = 2305 for level 922 or detyax = 3522 for level 1174, gives
a one-dimensional superspace *75T13+ of S3(K(2N))~"*[5], in each case. Thus

any one nonzero integral Fourier coefficient modulo p of some f,, ]\’ﬁ shows that
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By fon ' [5], = ,_75;;"', and this gives us the Fourier coefficients of f,5'[5], in F,

at the indices for which we have Fourier coefficients of the *75Tz;+ basis element.
We refer to this process as prolonging (fy5" ), Because f,y' is an Atkin-
Lehner eigenform, we can obtain yet more of its Fourier coefficients modulo p
by using the relations a(ata’; f,5t) = ea(t; fon") where a € {ag,an} is a
2 x 2 Atkin—Lehner involution matrix and o’ is its transpose, and ¢ is the cor-
responding eigenvalue. We refer to this process as infilling (f,, ]\}+)p. Prolonging
and infilling our initial fragment of (f,"), can give us enough information to
demonstrate that the desired nonlift exists at level N. Now let TD denote
the trace down operator both in characteristic 0 and in characteristic p. For
N = 461, the available Fourier coefficients of (fgy, ), from prolonging and in-
filling lead to 255 coeficients of its traced down image TD((fopy )p). These
are more than enough to show that the latter is linearly independent of the
Critsenko lifts modulo p. Because TD((fozs )p) = (TD fozs )p, it follows that
TD fop, is a nonlift in Sp(K(461))F. Similarly, for N = 587 we have 271
Fourier coefficients of the traced down image of the (f; ), that arises from
the second (or third) of the three nonlift Borcherds product in Sy(K(1174))~,
again plenty to determine that TD f;;, is a nonlift in Sy(K(587))*. The ideas
of this paragraph generalize beyond an odd prime level N and M = 2 and a
one-dimensional space J d;;‘*‘, but here we have described them only as needed
for the situation at hand.

6. Proof of Theorem 1.2

Recall that Theorem 1.2 says that the conjectured nonlift eigenform formulas
fn = Qn/Ly of [16,17] hold for N = 349, 353, 389, 461,523, 587%. Here Qu
lies in S4(K(N)) and Ly in Grit(J5 ). We prove the theorem.

Proof. To keep the discussion and notation simple, we will prove only the cases
N = 349,353,389, 461,523,587 here; the case N = 587~ is similar. We
may view S3(K(N)) as a subset of C*, indexed by Xo(N), by considering the
injective map that takes each element of So(K(N)) to its Fourier series. In
Section 6 of [16], the “integral closure” method proves that for each of these
N = 349,353,389, 461, 523, 587 there exists a space Yy C C* such that

SK(N))* CYy and dimYy = dimJ53P + 1.

By Theorem 1.1 we now know that dimSy(K(N))* = dim Yy, and conse-
quently So(K(N))™ = Yy. Thus the computations that were carried out on Yy
in [16] to find an initial Fourier expansion of an eigenform fx, conjectural
in [16], are now proven rigorous.

Also in [16], for a chosen Ly € Grit(J5'y’), an initial expansion of the
product Qn = fyLy was made to identify the form Qn € Sy (K(N))T as a
linear combination of products of Gritsenko lifts or products of Gritsenko lifts
with characters, possibly with Hecke operators applied to such products. We
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were able to do so because in [16] we spanned S4(K(V))™ by known forms, and
we had determining Fourier coefficients. Therefore each formula fy = Qn /Ly
is now proven. (I
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