DOI QR코드

DOI QR Code

The Closed-form Expressions of Magnetic Field Due to a Right Cylinder

원통형 이상체에 의한 자력 반응식

  • Rim, Hyoungrea (Department of Earth Science Education, Pusan National University) ;
  • Eom, Jooyoung (Department of Earth Science Education, Kyungpook National University)
  • 임형래 (부산대학교 지구과학교육과) ;
  • 엄주영 (경북대학교 지구과학교육과)
  • Received : 2020.01.16
  • Accepted : 2020.02.11
  • Published : 2020.02.28

Abstract

Herein, the closed-form expressions of the magnetic field due to an axially symmetric body such as a right cylinder, are derived. The magnetic field due to a right cylinder is converted from the gravity gradient tensor using Poisson's relation; the magnetic field induced by a constant magnetization can be obtained from the gravity gradient tensor with a constant density. Because of the axial symmetry of the cylinder, the expressions of gravity gradient tensor are derived in cylindrical coordinate and then transformed into Cartesian coordinates for the three components of the magnetic field using an arbitrary magnetization direction.

이 논문에서는 축 방향 대칭성을 가지는 원통형 이상체 대한 자력 반응식을 유도하였다. 일정한 방향으로 자화된 이상체가 생성시키는 자력장은 일정한 밀도를 가지는 이상체에 의한 중력 변화율 텐서로부터 변환 가능한 포아송(Poisson) 관계식을 이용하여 기존에 이미 유도된 원통형에 의한 중력 변화율 텐서로부터 3성분 자력 벡터를 유도하였다. 축 방향 대칭성을 이용하여 중력 변화율 텐서를 원통 좌표계에서 유도하였고 이를 직교 좌표계로 변환한 후 이상체의 자화 방향과 결합하여 3성분 자력 벡터를 유도하였다.

Keywords

References

  1. Arfken, G. B., Weber H. J., and Harris, F. E., 2012, Mathematical methods for physicists 7th ed., Elsevier.
  2. Blakely, R. J., 1996, Potential Theory in gravity and magnetic applications, Cambridge University Press.
  3. Blum, V. J., 1945, The magnetic field over igneous pipes, Geophysics, 10(3), 368-375. https://doi.org/10.1190/1.1437180
  4. Byrd, P. F., and Friedman, M. D., 1971, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag.
  5. Carlson, B. C., 1995, Numerical computation of real and complex elliptic integrals, Numer. Algorithms., 10(1), 13-26. https://doi.org/10.1007/BF02198293
  6. Carlson, B. C., and Notis, E. M., 1981, Algorithm 577: Algorithm for incomplete elliptic integrals [S21], AMC. Trans. Math. Softw., 7(3), 389-403.
  7. Damiata, B. N., and Lee, T. C., 2002, Gravitational attraction of solids of revolution. Part 1: Vertical circular cylinder with radial variation of density, J. Appl. Geophy., 50(3), 333-349. https://doi.org/10.1016/S0926-9851(02)00151-9
  8. Eason, G., Noble, B., and Sneddon, I. N., 1955, On certain integrals of Lipschitz-Hankel type involving products of Bessel functions, Proc. R. Soc. Lond. A. Math. Phys. Sci., 247(935), 529-551.
  9. Nabighian, M., 1962, The gravitational attraction of a right vertical circular cylinder at points external to it, Geofisica pura e applicata, 53(1), 45-51. https://doi.org/10.1007/BF02007108
  10. Nettleton, L. L., 1942, Gravity and magnetic calculations, Geophysics, 7(3), 293-310. https://doi.org/10.1190/1.1445015
  11. Rim, H., and Li, Y., 2016, Gravity gradient tensor due to a cylinder, Geophysics, 81(4), G59-G66. https://doi.org/10.1190/geo2015-0699.1
  12. Sarma, B. S. P., Verma, B. K., and Satyanarayana, S. V., 1999, Magnetic mapping of Majhgawan diamond pipe of central India, Geophysics, 64(6), 1735-1739. https://doi.org/10.1190/1.1444678
  13. Singh, S. K., 1977, Gravitational attraction of a vertical right circular cylinder, Geophys. J. Int., 50(1), 243-246. https://doi.org/10.1111/j.1365-246X.1977.tb01332.x
  14. Singh, S. K., and Sabina, F. J., 1978, Magnetic anomaly due to a vertical right circular cylinder with arbitrary polarization, Geophysics, 43(1), 173-178. https://doi.org/10.1190/1.1440818
  15. Singh, S. K., and Sabina, F. J., 1978, To: "Magnetic anomaly due to a vertical right circular cylinder with arbitrary polarization", by S. K. Singh and F. J. Sabina, Geophysics, v.43, p.173-178 (February, 1978), Geophysics, 43(6), 1312p. https://doi.org/10.1190/1.1440897