DOI QR코드

DOI QR Code

A Study of Three-dimensional Magnetization Vector Inversion (MVI) Modeling Using Bathymetry Data and Magnetic Data of TA (Tofua Arc) 12 Seamount in Tonga Arc, Southwestern Pacific

남서태평양 통가열도 TA (Tofua Arc) 12 해저산의 해저지형과 자력자료를 이용한 3차원 자화벡터역산 모델 연구

  • Choi, Soon Young (Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology) ;
  • Kim, Chang Hwan (Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology) ;
  • Park, Chan Hong (Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology) ;
  • Kim, Hyung Rae (Department of Geoenvironment Sciences, Kongju National University)
  • 최순영 (한국해양과학기술원 동해연구소 독도전문연구센터) ;
  • 김창환 (한국해양과학기술원 동해연구소 독도전문연구센터) ;
  • 박찬홍 (한국해양과학기술원 동해연구소 독도전문연구센터) ;
  • 김형래 (공주대학교 지질환경과학과)
  • Received : 2019.11.18
  • Accepted : 2020.02.21
  • Published : 2020.02.28

Abstract

We analyze the comprehensive three-dimensional (3D) magnetic structure characteristics from the seafloor to the deep layer of the Tofua Arc (TA) 12 seamount in the Tonga Arc, Southwestern Pacific, using bathymetric and geomagnetic data, and magnetization vector inversion (MVI) results. The seafloor features surrounding TA 12 highlight a NW-SE-oriented elliptical caldera at the summit of the seamount, two small cones in the depressed area. A large-scale sea valley is present on the western flank of the seamount, extending from these caldera cones to the southwestern base of the seamount. TA 12 seamount exhibits a low magnetic anomaly in the caldera depression, whereas a high magnetic anomaly is observed surrounding the low magnetic anomaly across the caldera summit. It is therefore presumed that there may be a strong magnetic material distribution or magma intrusion in the caldera. The 3D MVI results show that the high anomaly zones are mainly present in the surrounding slopes of the seamount from the seafloor to the -3,000 m (below the seafloor) level, with the magnetic susceptibility intensity increasing as the seafloor level increases at the caldera depression. However, small high anomaly zones are present across the study area near the seafloor level. Therefore, we expect that the magma ascent in TA 12 seamount migrated from the flanks to the depression area. Furthermore, we assume that the complex magnetic distribution near the seafloor is due to the remnant magnetization.

이 연구는 남서태평양 통가열도에 위치한 TA (Tofua Arc) 12 해저산에 대한 해저지형, 자력자료를 이용한 자화벡터역산 모델링을 통해 해저면에서 심부층까지의 종합적인 3차원 자력구조 특징을 분석하였다. 북서-남동 방향성을 가진 타원형의 칼데라 해저지형이 TA 12 해저산 정상부에서 나타나며, 두 개의 작은 콘 모양의 지형이 칼데라 정상부 함몰지형에 존재한다. 또한 해저산 정상부 서쪽 사면에서는 콘 지형이 나타나는 지역부터 해저산 기저부 남서쪽 사면까지 큰 규모의 사면 해저곡이 보인다. TA 12 해저산에서는 칼데라 함몰지형에 저자기이상대가 나타나고 그 주변 칼데라 정상부 및 사면 지역에 고자기이상대가 둘러싸여 있다. 이는 함몰지형을 포함한 칼데라 정상부 지역에 강한 자성체의 분포 또는 마그마 관입 가능성이 있다고 해석될 수 있다. 3차원으로 해석된 자화벡터역산 결과에서는 해저 -3000 m부터 해저산의 주변 사면지역에서의 고이상대 존재와 자기 감수율이 칼데라 정상부 및 함몰지형의 천부층으로 향해 증가함을 보여 준다. 한편 주로 칼데라 정상부의 해저면 근처에서 소규모 고이상대들이 곳곳에 나타나고 있다. 따라서 TA 12 해저산에서는 마그마가 심부에서 천부로 올라올 때 해저산 주변 사면부에서 칼데라 정상부 및 함몰지형으로 이동했음이 예상된다. 그리고 해저면 근처의 복잡한 자력분포는 잔류자화의 영향으로 추정된다.

Keywords

References

  1. Arculus, R. J., 2005, Arc-backarc systems of northern Kermadec-Tonga, Proc. 2005 New Zealand Minerals Conference, 45-50.
  2. Bastani, M., Sadeghi, M., Malehmir, A., Luth, S., and Marsden, P., 2019, 3D magnetic susceptibility model of a deep ironoxide apatite-bearing orebody incorporating borehole data in Blotberget, Sweeden, 16th SAGA 2019 (Extended Abs.), 1-4.
  3. Binns, R., 2011, Seafloor massive sulfide (SMS) potential within and beyond national jurisdiction in the Asia-Pacific region, ISA: International workshop on environmental management needs for exploration and exploration of deep seabed minerals (https://ran-s3.s3.amazonaws.com/isa.org.jm/s3fs-public/documents/EN/Workshops/2011/Presentations/2_RBinns.pdf ).
  4. Camacho, A. G., Prieto, J. F., Ancochea, E., and Fernandez, J., 2019, Deep volcanic morphology below Lanzarote, Canaries, from gravity inversion: New results for Timanfaya and implications, J. Volcanol. Geotherm. Res., 369, 64-79. https://doi.org/10.1016/j.jvolgeores.2018.11.013
  5. Cella, F., and Fedi, M., 2012, Inversion of potential field data using the structural index as weighting function rate decay, Geophys. Prospect., 60(2), 313-336. https://doi.org/10.1111/j.1365-2478.2011.00974.x
  6. Choi, S. K., Lee, K.-Y., Pak, S. J., Choi, S.-H., and Lee, I.-K., 2015, Mineralogical and Fluid Inclusion Study on Seafloor Hydrothermal Vents at TA25 Subsea Caldera in Tongan Waters, Econ. Environ. Geol., 48(4), 273-285 (in Korean with English abstract). https://doi.org/10.9719/EEG.2015.48.4.273
  7. Choi, S. Y., Kim, C. H., Park, C. H., and Kim, H. R., 2014, A Geophysical Study on Spreading Ridges and Hydrothermal Deposits in the North Fiji Basin UsingSea-Surface Magnetic and Bathymetry Data, J. Geol. Soc. Korea, 50(5), 627-641 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2014.50.5.627
  8. Choi, S. Y., Kim, C. H., Park, C. H., and Kim, H. R., 2018, Characterizing Magnetic properties of TA (Tofua Arc) 22 Seamount ($23^{\circ}$ 34′S) in the Lau Basin, Southwestern Pacific, Geophys. and Geophys. Explor., 21(2), 67-81 (in Korean with English abstract). https://doi.org/10.7582/GGE.2018.21.2.067
  9. Choi, S. G., 2014, Mineralogical Characteristics of the Hydrothermal Deposits at the TA25 Seamount in the Tofua Volcanic Arc, Southwestern Pacific, Ocean, Ph. M. Thesis, Chungbuk National University.
  10. Contreras-Reyes, E., Grevemeyer, I., Watts, A. B., Flueh, E. R., Peirce, C., Moeller, S., and Papenberg, C., 2011, Deep seismic structure of the Tonga subduction zone: Implications for mantle hydration, tectonic erosion, and arc magmatism, J. Geophys, Res., 116, B10103. https://doi.org/10.1029/2011JB008434
  11. Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, T. H., 1979, Submarine thermal sprirngs on the galapagos rift, Science, 203(4385), 1073-1083. https://doi.org/10.1126/science.203.4385.1073
  12. de Ronde, C. E., Baker, E. T., Massoth, G. J., Lupton, J. E., Wright, I. C., Feely, R. A., and Greene, R. R., 2001, Intraoceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand, Earth Planet. Sci. Lett., 193(4), 359-369. https://doi.org/10.1016/S0012-821X(01)00534-9
  13. de Ronde, C. E., Massoth, G. J., Butterfield, D. A., Christenson, B. W., Ishibashi, J., Ditchburn, R. G., Hannington, M. D., Brathwaite, R. L., Lupton, J. E., Kamenetsky, V. S., Graham, I. J., Zellmer, G. F., Dziak, R. P., Embley, R. W., Dekov, V. M., Munnik, F., Lahr, J., Evans, L. J., and Takai, K., 2011, Submarine hydrothermal activity and gold-rich mineralization at Brothers volcano, Kermadec arc, New Zealand, Mineralium Deposita, 46(5-6), 541-584. https://doi.org/10.1007/s00126-011-0345-8
  14. Ellis, R. G., de Wet, B., and Macleod, I. M., 2012, Inversion of Magnetic Data from Remanent and Induced Sources, 22nd International Geophysical Conference and Exhibition 2012. 1-4.
  15. Fournier, D., 2015, A Cooperative Magnetic Inversion Method With Lp-norm Regularization, Ph. M. Thesis, BSc Honours Geophysics, The University of British Columbia.
  16. German, C. R., and Von Damm, K. L., 2004, Hydrothermal Processes, in Holland, H. D., Turekian, K. K. and Elderfield (eds.), Treatise on Geochemistry, 6, Elservier, London, 181-222.
  17. Haney, M., and Li, Y., 2002, Total magnetization direction and dip from multiscale edges, 72nd Annual International Meeting, SEG, Expanded Abstracts 2002, 735-738.
  18. Hawkins, J., 1986, "Black smoker" vent chimneys, EOS, Trans. American Geophysics Union, Abstracts, 67(17), 430p. https://doi.org/10.1029/EO067i017p00430-01
  19. Hekinian, R., Muhe, R., Worthington, T. J., and Stoffers, P., 2008, Geology of a submarine volcanic caldera in the Tonga Arc: Dive results, J. Volcanol. Geotherm. Res., 176(4), 571-582. https://doi.org/10.1016/j.jvolgeores.2008.05.007
  20. Honsho, C., Yamazaki, T., Ura, T., Okino, K., Morozumi, H., and Ueda, S., 2016, Magnetic anomalies associated with abundant production of pyrrhotite in a sulfide deposits in the Okinawa Trough, Japan, Geochem. Geophys. Geosys., 17(11), 4413-4424. https://doi.org/10.1002/2016GC006480
  21. Joo, J. M., Kim, J. U., Ko, Y. T., Kim, S.-S., Son, J. W., Pak, S. J., Ham, D.-J., and Son, S. K., 2016, Characterizing Geomorphological Properties of Western Pacific Seamounts for Cobalt-rich Ferromanganese Crust Resource Assessment, Econ. Environ. Geol., 49(2), 121-134 (in Korean with English abstract). https://doi.org/10.9719/EEG.2016.49.2.121
  22. Kim, C. H., 2014, Magnetic Characteristics of TA19-1 and TA19-2 Seamounts in the Lau Basin, the South Western Pacific. Econ. Environ. Geol., 47(4), 395-404 (in Korean with English abstract). https://doi.org/10.9719/EEG.2014.47.4.395
  23. Kim, C. H., Kim, H., Jeong, E. Y., Park, C. H., Go, Y. T., and Lee, S. H., 2009, A Study on the Hydrrothermal Vent in the Mariana Trench using Magnetic and Bathymetry Data, The Sea, 14(1), 22-40 (in Korean with English abstract).
  24. Kim, H. S., Jung M.-S., Kim, C. H., Kim, J. U., and Lee, K.-Y., 2008, The Exploration Methodology of Seafloor Massive Sulfide Deposit by Use of Marine Geophysical Investigation, Geophys. and Geophys. Explor., 11(3), 167-176.
  25. Kennedy, B. M., Holohan, E. P., Stix, J., Gravley, D. M., Davidson, J. R. J., and Cole, J. W., 2018, Magma Plumbing benath collapse caldera volcanic systems, Earth-Sci. Rev., 177, 404-424. https://doi.org/10.1016/j.earscirev.2017.12.002
  26. Kereszturi, G., and Nemeth, K., 2012, Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and Degradation, InTechOpen 2012.
  27. Kim, J. U., Ko, Y.-T., Hyeong, K. S., and Moon, J.-W., 2013, Geophysical and Geological Exploration of Cobalt-rich Ferromanganese Crusts on a Seamount in the Western Pacific, Econ. Environ. Geol., 46(6), 569-580 (in Korean with English abstract). https://doi.org/10.9719/EEG.2013.46.6.569
  28. Kowalczyk, P., 2011, Geophysical exploration for Submarine Massive Sulfide deposits, OCEANS'11 MTS/IEEE KONA 2011, 1-5.
  29. Kwak, J. Y., Won, J. S., Park, C. H., Kim, C. H., and Ko, Y. T., 2008, The Study of Hydrothermal Vent and Ocean Crustal Structure of Northeastern Lau Basin Using Deep-tow and Surface-tow Magnetic Data, Econ. Environ. Geol., 41(1), 81-92 (in Korean with English abstract).
  30. Laske, G., Masters, G., Ma., Z., and Pasyanos, M., 2013, Update on CRUST 1.0 - A 1-degree Global Model of Earth's Crust, In Geophys. Res. Abstr. Vienna. Austria. EGU General Assembley 2013,, 15, 2658p.
  31. Lelievre, P. G., and Oldenburg, D. W., 2009, A 3D total magnetization inversion applicable when significant, complicated remanence is present, Geophysics, 74(3), L21-L30. https://doi.org/10.1190/1.3103249
  32. Leao-Santos, M., Li, Y., and Moraes, R., 2015, Application of 3D magnetic amplitude inversion to iron oxide-copper-gold deposits at low magnetic latitutes: A case study from Carajas Mineral Province, Brazil, Geophysics, 80(2), B13-B22. https://doi.org/10.1190/geo2014-0082.1
  33. Li, Y., and Oldenburg, D. W., 1996, 3D inversion of magnetic data, Geophysics, 61(2), 394-408. https://doi.org/10.1190/1.1443968
  34. Li, Y., Shearer, S., Haney, M., and Dannemiller, N., 2004, Comprehensive approaches to the inversion of magnetic data with strong remanent magnetization, 74th Annual International Meeting. SEG. Expanded Abstracts 2004, 1191-1194.
  35. Li, Y., Shearer, S. E., Haney, M. M., and Dannemiller, N., 2010, Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization, Geophysics, 75(1), L1-L11. https://doi.org/10.1190/1.3294766
  36. Liu, S., Fedi, M., Hu, X., Ou, Y., Baniamerian, J., Zuo, B., Liu, Y., and Zhu, R., 2018, Three-dimensional inversion of magnetic data in the simultaneous presence of significant remanent magnetization and self-demagnetization: example from Daye iron-ore deposit, Hubei province, China, Geophys. J. Int., 215(1), 614-634. https://doi.org/10.1093/gji/ggy299
  37. Macleod, I. N., Jones, K., and Dai, T. F., 1993, 3-D Analytic Signal in the Interpretation of Total Magnetic Field Data at Low Magnetic Latitudes, Explor. Geophys., 24(4), 679-688. https://doi.org/10.1071/EG993679
  38. Macleod, I. N., and Ellis, R. G., 2013, Magnetic Vector Inversion, a simple approach to the challenge of varying direction of rock magnetization, Australian Society of Exploration Geophysicsts 2013, 1(4).
  39. Marti, J., Lopez, C., Bartolini, S., Becerril, L., and Geyer, A., 2016, Stress Controls of Monogenetic Vocanism: A review, Front. Earth Sci., 4, Article 106.
  40. Massoth, G., Baker, E., Worthington, T., Lupton, J., de Ronde, C., Arculus, R., Walker, S., Nakamura, K.-i., Ishibashi. J.-i, Stoffers, P., Resing. J., Greene. R., and Lebon, G., 2007, Multiple hydrothermal sources along the south Tonga arc and Valu Fa Ridge, Geochem. Geophys. Geosyst., 8, Q11008.
  41. Min, K. D., Seo, J. H., and Kwon, B. D., 1987, Applied Geophysics, Woosung Press, 135-227.
  42. Morgan, L. A., and Shanks, W. C., 2005, Influences of rhyolitic lava flows on hydrothermal processes in Yellowstone Lake and on the Yellowstone Plateau, In Geothermal Biology and Geochemistry in Yellowstone National Park. Proceeding of the Thermal Biology Institute workshop 2005, Montana State Univ. Publications, 31-52.
  43. Morris, B., Ugalde, H., and Thomson, V., 2007, Magnetic remanence constraints on magnetic inversion model models, The Leading Edge, 26(8), 960-964. https://doi.org/10.1190/1.2769548
  44. Portniaguine, O., and Zhdanov, M. S., 1999, Focusing geophysical inversion images, Geophysics, 64(3), 874-887. https://doi.org/10.1190/1.1444596
  45. Portniaguine, O., and Zhdanov, M. S., 2002, 3-D magnetic inversion with data compression and image focusing, Geophysics, 67(5), 1532-1541. https://doi.org/10.1190/1.1512749
  46. de Ritis, R., Domonici, R., Ventura, G., Nocolosi, I., Chiappini, M., Speranza, F., de Rosa, R., Donato, R., and Sonnino, M., 2010, A buried volcano in the Calabrian Arc (Italy) revealed by high‐resolution aeromagnetic data, J. Geophys. Res. Solid Earth, 115, B11101. https://doi.org/10.1029/2009JB007171
  47. Ross, P-S., and Mercier-Langevin, P., 2014, The volcanic getting of VMS and SMS deposits: a review, Geoscience Canada, 41(3), 365-377. https://doi.org/10.12789/geocanj.2014.41.045
  48. Sager, W. W., Lamarche, A. J., and Kopp, C., 2005, Paleomagnetic modeling of seamounts near the Hwaiian-Emperor bend, Tectonophysics., 405(1-4), 121-140. https://doi.org/10.1016/j.tecto.2005.05.018
  49. Searle, R. C., Murton, B. J., Achenbach, K., Lebas, T., Tivey, M., Yeo, I., Cormier, M. H., Carlut, J., Ferreira, P., Mallows, C., Morris, K., Schroth, N., von Calsteren, P., and Waters, C., 2010, Structure and development of an axial volcanic ridge: Mid-Atlantic Ridge, $45^{\circ}N$, Earth Planet. Sci. Lett., 299(1-2), 228-241. https://doi.org/10.1016/j.epsl.2010.09.003
  50. Shanks, W. C., 2001, Stable Isotopes in Seafloor Hydrothermal Systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes, Rev. Mineral. Geochem., 43(1), 469-525. https://doi.org/10.2138/gsrmg.43.1.469
  51. Shanks, W. C., and Thurston, R. (eds.), 2012, Volcanogenic Massive Sulfides Occurrence Model, US Department of the Interior, US Geological Survey 2012, 61-131.
  52. Shearer, S., 2005, Three-dimensional inversion of magnetic data in the presence of remanent magnetization, Ph.D. Thesis, Colorado School of Mines.
  53. Shearer, S., and Li, Y., 2004, 3D inversion of magnetic total gradient data in the presence of remanent magnetization, 74th Annual International Meeting, SEG, Expanded Abstracts 2004, 774-777.
  54. Stoffers, P., Worthington, T., Schwarz-Schampera, U., Ackermand, D., Beaudoin, Y., Bigalke, N., Fretzdorff, S., Gibson, H., Hekinian, R., Kindermann, A., Kuhn, T., Main, W., Schreiber, K., Timm, C., Tonga'onevai, S., Türkay, M., Unverricht, D., Vailea, A., and Zimmerer, M., 2003, Cruise Report SONNE 167 LOUISVILLE-Louisville Ridge: Dynamics and Magmatism of a Mantle Plume and its Influence on the Tonga-Kermadec Subduction System; Suva, Fiji-Wellington, New Zealand, 12 October- 02 December 2002, Inst, Fur Geowiss. 2002.
  55. Stoffers, P., Worthington, T. J., Schwarz-Schampera, U., Hannington, M. D., Massoth, G. J., Hekinian, R., Schmidt, M., Lundsten, L. J., Evans, L. J., Vaiomo'unga, R., and Kerby, T., 2006, Submarine volcanoes and high-temperature hydrothermal venting on the Tonga arc, southwest Pacific, Geology, 34(6), 453-456. https://doi.org/10.1130/G22227.1
  56. Wang, M., Di, Q., Xu, K., and Wang, R., 2004, Magnetization vertor inversion equations and forward and inverse 2-d model study, Chinese J. Geophys., 47(3), 601-609. https://doi.org/10.1002/cjg2.526
  57. Zuo, B., Hu, X., Cai, Y., and Liu, S., 2019, 3D magnetic amplitude inversion in the presence of self-demagnetization and remanent magnetization, Geophysics, 84(5), J69-J82. https://doi.org/10.1190/geo2018-0514.1