Acknowledgement
This study was supported by funds from the National Key Research and Development Program of China (2017YFD0501003 and 2016YFD0500102).
References
- Laude H, Rasschaert D, Delmas B, Godet M, Gelfi J, Charley B. Molecular biology of transmissible gastroenteritis virus. Vet Microbiol. 1990;23(1-4):147-154. https://doi.org/10.1016/0378-1135(90)90144-K
- Pineyro PE, Lozada MI, Alarcon LV, Sanguinetti R, Cappuccio JA, Perez EM, et al. First retrospective studies with etiological confirmation of porcine transmissible gastroenteritis virus infection in Argentina. BMC Vet Res. 2018;14(1):292. https://doi.org/10.1186/s12917-018-1615-9
- Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1-100.
- Eleouet JF, Rasschaert D, Lambert P, Levy L, Vende P, Laude H. Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology. 1995;206(2):817-822. https://doi.org/10.1006/viro.1995.1004
- Ding L, Huang Y, Du Q, Dong F, Zhao X, Zhang W, et al. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling. Biochem Biophys Res Commun. 2014;445(2):497-503. https://doi.org/10.1016/j.bbrc.2014.02.039
- Zhang Q, Xu Y, Chang R, Tong D, Xu X. Transmissible gastroenteritis virus N protein causes endoplasmic reticulum stress, up-regulates interleukin-8 expression and its subcellular localization in the porcine intestinal epithelial cell. Res Vet Sci. 2018;119:109-115. https://doi.org/10.1016/j.rvsc.2018.06.008
- Zhu L, Mou C, Yang X, Lin J, Yang Q. Mitophagy in TGEV infection counteracts oxidative stress and apoptosis. Oncotarget. 2016;7(19):27122-27141. https://doi.org/10.18632/oncotarget.8345
- Koczulla AR, Bals R. Antimicrobial peptides: current status and therapeutic potential. Drugs. 2003;63(4):389-406. https://doi.org/10.2165/00003495-200363040-00005
- Li J, Wang FP, She WM, Yang CQ, Li L, Tu CT, et al. Enhanced high-mobility group box 1 (HMGB1) modulates regulatory T cells (Treg)/T helper 17 (Th17) balance via toll-like receptor (TLR)-4-interleukin (IL)-6 pathway in patients with chronic hepatitis B. J Viral Hepat. 2014;21(2):129-140. https://doi.org/10.1111/jvh.12152
- Vilas Boas LC, de Lima LM, Migliolo L, Mendes GD, de Jesus MG, Franco OL, et al. Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus. Biopolymers. 2017;108(2):e22871. https://doi.org/10.1002/bip.22871
- Boman HG, Wade D, Boman IA, Wahlin B, Merrifield RB. Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett. 1989;259(1):103-106. https://doi.org/10.1016/0014-5793(89)81505-4
- Kim JS, Jeong JH, Cho JH, Lee DH, Kim Y. Antimicrobial activity of antimicrobial peptide LPcin-YK3 derived from bovine lactophoricin. J Microbiol Biotechnol. 2018;28(8):1299-1309. https://doi.org/10.4014/jmb.1805.05001
- Albar AH, El-Fakharany EM, Almehdar HA, Uversky VN, Redwan EM. In vitro exploration of the anti-HCV potential of the synthetic spacer peptides derived from human, bovine, and camel lactoferrins. Protein Pept Lett. 2017;24(10):909-921.
- Arias M, Hilchie AL, Haney EF, Bolscher JG, Hyndman ME, Hancock RE, et al. Anticancer activities of bovine and human lactoferricin-derived peptides. Biochem Cell Biol. 2017;95(1):91-98. https://doi.org/10.1139/bcb-2016-0175
- Albiol Matanic VC, Castilla V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents. 2004;23(4):382-389. https://doi.org/10.1016/j.ijantimicag.2003.07.022
- Robinson WE Jr, McDougall B, Tran D, Selsted ME. Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J Leukoc Biol. 1998;63(1):94-100. https://doi.org/10.1002/jlb.63.1.94
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- Peck BC, Shanahan MT, Singh AP, Sethupathy P. Gut microbial influences on the mammalian intestinal stem cell niche. Stem Cells Int. 2017;2017:5604727. https://doi.org/10.1155/2017/5604727
- Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg. 1938;27(20):493-497.
- Wei Z, Burwinkel M, Palissa C, Ephraim E, Schmidt MF. Antiviral activity of zinc salts against transmissible gastroenteritis virus in vitro. Vet Microbiol. 2012;160(3-4):468-472. https://doi.org/10.1016/j.vetmic.2012.06.019
- Hansen GH, Delmas B, Besnardeau L, Vogel LK, Laude H, Sjostrom H, et al. The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment. J Virol. 1998;72(1):527-534. https://doi.org/10.1128/jvi.72.1.527-534.1998
- Dong W, Xie W, Liu Y, Sui B, Zhang H, Liu L, et al. Receptor tyrosine kinase inhibitors block proliferation of TGEV mainly through p38 mitogen-activated protein kinase pathways. Antiviral Res. 2020;173:104651. https://doi.org/10.1016/j.antiviral.2019.104651
- Ding Z, An K, Xie L, Wu W, Zhang R, Wang D, et al. Transmissible gastroenteritis virus infection induces NF-κB activation through RLR-mediated signaling. Virology. 2017;507:170-178. https://doi.org/10.1016/j.virol.2017.04.024
- Huang HN, Pan CY, Chen JY. Grouper (Epinephelus coioides) antimicrobial peptide epinecidin-1 exhibits antiviral activity against foot-and-mouth disease virus in vitro. Peptides. 2018;106:91-95. https://doi.org/10.1016/j.peptides.2018.07.003
- Yao Y, Liu T, Wang X, Zhang D. The contrary effects of Sirt1 on MCF7 cells depend on CD36 expression level. J Surg Res. 2019;238:248-254. https://doi.org/10.1016/j.jss.2019.01.046
- Duan L, Chen Q, Duan S. Transcriptional analysis of Chlorella pyrenoidosa exposed to bisphenol A. Int J Environ Res Public Health. 2019;16(8):1374. https://doi.org/10.3390/ijerph16081374
- He M, Zhang H, Li Y, Wang G, Tang B, Zhao J, et al. Cathelicidin-derived antimicrobial peptides inhibit zika virus through direct inactivation and interferon pathway. Front Immunol. 2018;9:722. https://doi.org/10.3389/fimmu.2018.00722
- Zuniga S, Cruz JL, Sola I, Mateos-Gomez PA, Palacio L, Enjuanes L. Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription. J Virol. 2010;84(4):2169-2175. https://doi.org/10.1128/JVI.02011-09
- Song Z, Yang Y, Wang L, Wang K, Ran L, Xie Y, et al. EIF4A2 interacts with the membrane protein of transmissible gastroenteritis coronavirus and plays a role in virus replication. Res Vet Sci. 2019;123:39-46. https://doi.org/10.1016/j.rvsc.2018.12.005
- Chai W, Burwinkel M, Wang Z, Palissa C, Esch B, Twardziok S, et al. Antiviral effects of a probiotic Enterococcus faecium strain against transmissible gastroenteritis coronavirus. Arch Virol. 2013;158(4):799-807. https://doi.org/10.1007/s00705-012-1543-0
- Xue M, Fu F, Ma Y, Zhang X, Li L, Feng L, et al. The PERK arm of the unfolded protein response negatively regulates transmissible gastroenteritis virus replication by suppressing protein translation and promoting type I interferon production. J Virol. 2018;92(15):e00431-e18.
- Guo L, Yu H, Gu W, Luo X, Li R, Zhang J, et al. Autophagy negatively regulates transmissible gastroenteritis virus replication. Sci Rep. 2016;6(1):23864. https://doi.org/10.1038/srep23864
- Xia L, Yang Y, Wang J, Jing Y, Yang Q. Impact of TGEV infection on the pig small intestine. Virol J. 2018;15(1):102. https://doi.org/10.1186/s12985-018-1012-9
- Alvarez J, Sarradell J, Morrison R, Perez A. Impact of porcine epidemic diarrhea on performance of growing pigs. PLoS One. 2015;10(3):e0120532. https://doi.org/10.1371/journal.pone.0120532