• Title/Summary/Keyword: Transmissible gastroenteritis virus

Search Result 35, Processing Time 0.044 seconds

Improvement of Virus Productivity by Sodium Butyrate in the Production of Porcine Transmissible Gastroenteritis Virus Vaccine (Sodium butyrate에 의한 돼지 전염성 위장염 바이러스 백신의 생산성 향상)

  • Lee, Chang-Jin;Kim, Cheol-Min;Jeong, Yeon-Ho
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.107-111
    • /
    • 2011
  • The essential operating parameters in virus vaccine production are multiplicity of infection (MOI), harvest time, and infection time. Stimulating agents also can be applied in order to improve vaccine productivity further. We investigated the optimum operating conditions in porcine transmissible gastroenteritis virus (TGEV) vaccine production and the applicability of sodium butyrate (NaBu) as a stimulating agents for the improvement of vaccine productivity. The optimum MOI, infection time, and harvest time for high production of TGEV by swine testicle (ST) cells were found to be 0.0001 pfu/cell, 3 day after cell inoculation, and 24 hpi, respectively. NaBu is known as a histone deacetylase inhibitor that has been widely used for the high expression of recombinant protein using mammalian cells and for the enhancement of virus propagation. So we tried to examine the potential of NaBu as a stimulating agent and to determine the optimum concentration by comparing TGEV titers with different range of NaBu concentration. TGEV titer with 5 mM NaBu was 1.5 times higher than control. Therefore, we concluded that NaBu can be a promising agent for stimulating various vaccine production including TGEV and the optimum NaBu concentration for TGEV production was determined to be 5 mM.

Production and characterization of monoclonal antibodies against porcine transmissible gastroenteritis virus (돼지 전염성 위장염 바이러스에 대한 단크론항체 생산 및 특성)

  • Jang, Young-en;Cho, Sun-hee;Kim, Byung-han;Ahn, Jae-moon;Kang, Shien-young
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.2
    • /
    • pp.336-344
    • /
    • 1998
  • Eight monoclonal antibodies(MAbs) against the transmissible gastroenteritis virus (TGEV) were produced and characterized. Four of the MAbs were produced against a reference TGEV, Purdue strain(P115) and the others were produced against the Korean vaccine virus, Pyungtaek strain. Only one MAb(5C8) produced against P115 had neutralizing activity and was found to be E2 protein-specific. The other seven MAbs(4E2, 4G8, 5H6, 1F8, 2C6, 5H5, and 3A6) had specificity of nucleocapsid protein and no neutralizing activity. All MAbs reacted with different strains of TGEV, but none of the MAbs was reactive with porcine enteropathogenic viruses such as rotavirus, epidemic diarrhea virus and enterovirus by fluorescence antibody(FA) test.

  • PDF

Development of sandwich enzyme-linked immunosorbent assay for a large-scale detection of porcine transmissible gastroenteritis virus in feces

  • Oh, Yeonsu;Lee, Sang-Joon;Cho, Ho-Seong;Tark, Dongseob
    • Korean Journal of Veterinary Service
    • /
    • v.43 no.4
    • /
    • pp.237-244
    • /
    • 2020
  • Porcine transmissible gastroenteritis (TGE) has been a significant cause of economic losses in pig farming industry since 1950s. Although transmissible gastroenteritis virus (TGEV) has declined in recent years, it should not be excluded because of its characteristics; the frequency of gene mutation, the mortality in piglets, and the possibility for sudden incidence. Therefore, the herd-level monitoring of the virus is important to prevent further circulation of TGE. The aim of this study is to develop a large-scale sandwich enzyme-linked immunosorbent assay (ELISA) with high specificity to rapidly detect TGEV in feces by using monoclonal antibodies (Mabs). The TGEV specific Mabs were produced in hybridoma cells. Among the Mabs belonged to the IgG class developed by this study, the final selected 8H6, 1B7, 4G3, and 1F8 were identified to have the neutralization ability against TGEV. The sandwich ELISA was established using 8H6 as a reporter antibody and 1B7 and the reported 5C8 as a capture antibody. The developed sandwich ELISA was able to distinguish TGEV from other pathogenic diarrheal agents (porcine rotavirus, porcine reovirus, porcine epidemic diarrhea virus (PEDV), E. coli, and C. perfringens) in tissue culture as well as fecal samples. And the detection rate of TGEV in feces was 80% compared with RT-PCR. The results suggested that the developed sandwich ELISA may be useful in the herd-level monitoring for effective preventive measures due to the early diagnosis of TGEV using a large amount of samples.

Differentiation between Porcine Epidemic Diarrhea Virus and Transmissible Gastroenteritis Virus in Formalin-fixed Paraffin-embedded Tissues by Multiplex RT-nested PCR and Comparison with in situ Hybridization

  • Jung, Kwon-il;Kim, Jung-hyun;Chae, Chan-hee
    • Proceedings of the Korean Society of Veterinary Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.27-27
    • /
    • 2003
  • Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) infections are considered difficult to distinguish clinically and histopathologically. Prompt differentiation between PEDV- and TGEV-associated enteritis would greatly facilitate the management of disease in countries where PEDV and TGEV are epizootic. Rapid differential diagnosis and treatment are crucial to reducing mortality and morbidity from PEDV- and TGEV-induced enteritis in piglets. The objective for this study was to develop a protocol to differentiate between PEDV and TGEV directly from formalin-fixed, paraffin-embedded tissue, using a multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR) assay. (omitted)

  • PDF

Analysis of the spike glycoprotein gene and nonstructural protein gene of transmissible gastroenteritis virus using PCR and RFLP analysis (PCR과 RFLP분석을 이용한 transmissible gastroenteritis virus의 spike glycoprotein gene과 nonstructural protein gene의 분석)

  • Kwon, Hyuk-moo
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.627-633
    • /
    • 1996
  • To analyze the genomic diversity of transmissible gastroenteritis virus (TGEV), the N-terminal half of the spike (S) glycoprotein gene and nonstructural protein gene (open reading frames 3 and 3-1) were amplified by reverse transcriptase reaction and polymerase chain reaction (RT-PCR), and analyzed using restriction fragment length polymorphism (RFLP) patterns of the amplified DNA. In this study, TGEV Miller (M6) and Purdue (P115) strains were used as reference strains, and two vaccine strains (MSV and STC3) and four Korea isolates (P44, VRI-WP, VRI-41, and VRI-48) were analyzed. All TGEV strains were amplified with three TGEV primer pairs. Although there was some exception in RFLP analysis, this method differentiated TGEV strains into following groups : Miller group (M6 and MSV), Purdue group (PUS, STC3, P44, VRI-WP, VRI-41, and VRI-48). Using Sau3AI and SspI, VRI-48 was differentiated from the Miller and Purdue type viruses. The RT/PCR in conjuction with RFLP analysis was a rapid and valuable tool for differentiating several strains of TGEV. This study revealed the occurences of distinct difference in genome of TGEV strains.

  • PDF

Development of monoclonal antibody capture ELISA for the detection of antibodies against transmissible gastroenteritis virus

  • Oh, Yeonsu;Tark, Dongseob
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Transmissible gastroenteritis (TGE) is a disease confined to pigs of all ages, and can be a significant cause of economic loss in breeding herds, primarily because of the very high piglet mortality. The causative agent is a coronavirus, an enveloped positive strand RNA virus and closely related but non-enteropathogenic porcine respiratory coronavirus (PRCV). Although the TGEV has declined with its innocent relative, PRCV, further genome changes could not be excluded. Therefore, the herd-level immunity against this virus is important for the prevention of disease and should be carefully monitored. The aim of this study is to develop monoclonal antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) which can rapidly and accurately determine a large numbers of serum samples for surveillance purpose, and to compare the ELISA with a TGEV-specific serum neutralization test. The MAC-ELISA was sufficiently achieved, and the comparison with the virus-specific serum neutralization assays for 713 sera from pig farms showed a high correlation ($r^2=0.812$, P<0.001). The specificity and sensitivity of MAC-ELISA for the serum neutralization test 91.9% and 91.6%, respectively, which means that the antibody detected by the MAC-ELISA could be said to be protective antibodies. In conclusion, the developed MAC-ELISA would be very helpful in evaluating protective antibodies against TGEV.

Development of TaqMan Probe Real-Time RT-PCR for Quantitative Detection of Porcine Transmissible Gastroenteritis Virus During the Manufacture of Biopharmaceuticals (생물의약품 제조 공정에서 Porcine transmissible gastroenteritis virus 정량 검출을 위한 TaqMan Probe Real-Time RT-PCR 개발)

  • Lee, Jae Il;Han, Sang Eun;Kim, In Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • Biopharmaceuticals and the cell substrates used for their manufacture are currently tested for porcine adventitious viruses due to the widespread use of porcine trypsin in cell culture. Porcine transmissible gastroenteritis virus (PTGV) is one of the major adventitious porcine viruses causing contaminated during the manufacture of biopharmaceuticals. Therefore, rapid and sensitive detection of PTGV is essential in ensuring the safety of biopharmaceuticals. A TaqMan probe real-time RT-PCR method was developed for the quantitative detection of PTGV contamination in cell substrates, raw materials, manufacturing processes, and final products, as well as PTGV clearance validation. Specific primers for the amplification of PTGV RNA were selected, and PTGV RNA was quantified by use of a specific TaqMan probe. Specificity, limit of detection (LOD), and robustness of the method was validated according to international guidelines on the validation of nucleic acid amplification tests. The sensitivity of the assay was calculated to be 1.10 × 100 TCID50/ml. The real-time RT-PCR method was validated to be reproducible, very specific to PTGV, and robust. The established real-time RT-PCR assay was successfully applied to the validation of Chinese Hamster Ovary (CHO)-K1 cells artificially infected with PTGV.

Expression of the S glycoprotein of transmissible gastroenteritis virus (TGEV) in transgenic potato and its immunogenicity in mice

  • Ahn, Dong-Joo;Youm, Jung Won;Kim, Suk Weon;Yoon, Won Kee;Kim, Hyoung Chin;Hur, Tai-Young;Joung, Young Hee;Jeon, Jae-Heung;Kim, Hyun Soon
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.4
    • /
    • pp.217-224
    • /
    • 2013
  • Transgenic plants have been tested as an alternative host for the production and delivery of experimental oral vaccines. Here, we developed transgenic potatoes that express the major antigenic sites A and D of the glycoprotein S from transmissible gastroenteritis coronavirus (TGEV-$S_{0.7}$) under three expression vector systems. The DNA integration and mRNA expression level of the TGEV-$S_{0.7}$ gene were confirmed in transgenic plants by PCR and northern blot analysis. Antigen protein expression in transgenic potato was determined by western blot analysis. Enzyme-linked immunosorbent assay results revealed that based on a dilution series of Escherichia coli-derived antigen, the transgenic line P-2 had TGEV-$S_{0.7}$ protein at levels that were 0.015% of total soluble proteins. We then examined the immunogenicity of potato-derived TGEV-$S_{0.7}$ antigen in mice. Compared with the wild-type potato treated group and synthetic antigen treated group, mice treated with the potato-derived antigen showed significantly higher levels of immunoglobulin (Ig) G and IgA responses.

Sequence analysis and cDNA probe hybridization of the nucleocapsid(N) protein gene of transmissible gastroenteritis virus(TGEV) and porcine epidemic diarrhea virus(PEDV) (Transmissible gastroenteritis virus(TGEV)와 porcine epidemic diarrhea virus(PEDV)의 nucleocapsid(N) 단백질 유전자에 대한 염기서열 분석과 cDNA probe hybridization)

  • Park, Ji-yong;Kim, Chul-joong;Shin, Kwang-soon;Kim, Won-yong;Kang, Shien-young;Park, Yong-ho;Han, Hae-jung;Park, Yong-ha
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.3
    • /
    • pp.515-530
    • /
    • 1995
  • Coronaviridae에 속하는 transmissible gastroenteritis virus(TGEV)와 porcine epidemic diarrhea virus(PEDV)를 specific하게 detection할 수 있는 방법을 개발하고자 본 연구를 수행하였다. 두 바이러스 모두 RNA 바이러스이기 때문에 reverse transcription-polymerase chain reaction(RT-PCR)으로 nucleocapsid(N) protein gene의 cDNA를 증폭시켰다. SmaI으로 처리한 pTZ19R에 ligation시킨 후 염기서열을 밝히고자 sequencing하였다. 각각의 prototype virus와 비교하여 상동성을 밝혔다. 두 바이러스에 대한 cDNA probe를 제작하여 Southern blot hybridization을 실시하였다. TGEV의 경우 백신주인 P45와 병독주인 Miller strain을 사용하였다. cDNA를 증폭시키기 위해 N1/N1R과 N2/N2R 두 가지 primer를 이용한 결과, N1/N1R primer의 경우 586bp 크기의 PCR product를 얻을 수 있었고, N2/N2R primers로 582bp의 cDNA를 증폭시킬 수 있었다. PEDV 실험을 위하여 PED 임상 증상을 나타내는 분변을 이용하여 RT-PCR을 실시하였다. P2/P2R primer로 753bp의 PCR product를 얻을 수 있었다. TGEV의 두 가지 strain의 N protein gene을 sequencing하여 prototype인 Purdue strain과 염기서열 상동성을 조사한 결과, 97%이상의 높은 homology를 나타내었다. PED-V 역시 N protein gene을 sequencing하여 CV777과 염기서열 상동성을 조사한 결과 97%이상의 homology로 PEDV임을 알 수 있었다. TGEV와 PEDV의 염기서열을 비교한 결과 29%의 낮은 homology를 관찰할 수 있었다. 두 가지 바이러스의 N protein gene에 대한 cDNA probe를 제작하여 Southern blot hybridization을 한 결과, 각 바이러스에 매우 특이적 반응을 나타내었다.

  • PDF

Strategies for Transmissible Gastroenteritis Virus(TGEV) Vaccine Production by Swine testicle cells

  • Kim, Min-Young;Jeong, Yeon-Ho;Kim, Myoung-Hwa;Ko, Yun-Mi
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.203-206
    • /
    • 2005
  • TGE (Transmissible Gastroenteritis) caused by a virus belonging to family coronavirus, results in an acute infection of the small intestine of the pig. The optimum operation variables such as multiplicity of infection (MOI), infection time and harvest time were investigated for TGE vaccine production by immobilized ST(swine testicle) cells. In the culture supplemented with 5% serum, maximum virus titer of $1.2{\times}10^6pfu/ml$ was obtained at the conditions of 0.01 MOI, 2day infection time, and 1 day harvest time. Serum is a potential source of bacterial, mycoplasmal and viral contamination, and it has a possibility of the introduction of serum proteins, prion and pyrogens into the final product. For these reasons, much attention has been focused on the development of serum-free media. A new serum-free media (SFM) has been developed in order to produce TGE vaccine of high quality with low cost. The performance of SFM developed was compared with other commercially available serum-free media and serum supplemented media in terms of virus productivity. The cultures with serum-free media showed higher titer than that with serum supplemented media. Among various serum-free media tested, CHO-S-SFMII showed highest virus titer.

  • PDF