References
- C. S. Jin, "Battery for large scale energy storage", KIC News, 13, 23 (2010).
- M. Bartolozzi, "Development of redox flow batteries. A historical bibliography", J. Power Sources, 7, 219 (1989). https://doi.org/10.1016/0378-7753(89)80037-0
- K. W. Sung, S. H. Shin, and S. H. Moon, "Characterization of commercial membranes for non-aqueous vanadium redox flow battery", Korean Chem. Eng. Res., 51, 615 (2013). https://doi.org/10.9713/kcer.2013.51.5.615
- A. Parasuraman, T. M. Lim, C. Menictas, and M. Skyllas-Kazacos, "Review of material research and development for vanadium redox flow battery applications", Electrochim. Acta, 101, 27 (2013). https://doi.org/10.1016/j.electacta.2012.09.067
- G. L. Soloveichik, "Flow batteries: Current status and trends", Chem. Rev., 115, 11533 (2015). https://doi.org/10.1021/cr500720t
- H. Prifti, A. Parasuraman, S. Windardi, T. M. Lim, and M. Skyllas-Kazacos, "Membranes for redox flow battery applications", Membranes, 2, 275 (2012). https://doi.org/10.3390/membranes2020275
- Y. M. Baek, N. S. Kwak, T. S. Hwang, Y. Baek, N.-S. Kwak, and T. S. Hwang, "Synthesis and characterization of vinylbenzyl chloride-co-styrene-co-hydroxyethyl acrylate (VBC-co-St-co-HEA) anion-exchange membrane for all-vanadium redox flow battery", Polymer Korea, 35, 586 (2011). https://doi.org/10.7317/pk.2011.35.6.586
- L. Li, S. Kim, G. Xia, and Z. G. Yang, "Advanced redox flow batteries for stationary electrical energy storage", J. Electrochem. Soc., 163, 1 (2012).
- A. Cunha, J. Martins, N. Rodrigues, and F. P. Brito, "Vanadium redox flow batteries: A technology review", Int. J. Energy Res., 2015, 889 (2014).
- C. H. Bae, E. P. L. Roberts, and R. A. W. Dryfe, "Chromium redox couples for application to redox flow batteries", Electrochim. Acta, 48, 279 (2002). https://doi.org/10.1016/S0013-4686(02)00649-7
- M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, and M. Saleem, "Progress in flow battery research and development", J. Electrochem. Soc., 158, 55 (2011).
- P. K. Leung, C. Ponce de Leon, and F. C. Walsh, "The influence of operational parameters on the performance of an undivided zinc-cerium flow battery", Electrochem. Acta, 80, 7 (2012). https://doi.org/10.1016/j.electacta.2012.06.074
- H. Vafiadis and M. Skyllas-Kazacos, "Evaluation of membranes for the novel vanadium bromine redox flow cell", J. Memb. Sci., 279, 394 (2006). https://doi.org/10.1016/j.memsci.2005.12.028
- M. Kazacos, M. Cheng, and M. Skyllas-Kazacos, "Vanadium redox cell electrolyte optimization studies", J. Appl. Electrochem., 20, 463 (1990). https://doi.org/10.1007/BF01076057
- A. Z. Weber, M. M. Mench, J. P. Meyers, P. M. Ross, J. T. Gostick, and Q. Liu, "Redox flow batteries: A review", J. Appl. Electrochem., 41, 1137 (2011). https://doi.org/10.1007/s10800-011-0348-2
- D. Y. Ha, S. K. Kim, D. H. Jung, S. Y. Lim, D. H. Baek, B. R. Lee, and G. Y. Lee, "Effect of carbon felt oxidation methods on the electrode performance of vanadium redox flow battery", J. Korean Electrochem. Soc., 12, 263 (2009). https://doi.org/10.5229/JKES.2009.12.3.263
- H. S. Choi, Y. H. Oh, C. H. Ryu, and G. J. Hwang, "Characteristics of the all-vanadium redox flow battery using anion exchange membrane", J. Taiwan Institute Chem. Eng., 45, 2920 (2014). https://doi.org/10.1016/j.jtice.2014.08.032
- G. J. Hwang and H. Ohya, "Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery", J. Membr. Sci., 120, 55 (1996). https://doi.org/10.1016/0376-7388(96)00135-4
- D. H. Kim, S. J. Seo, M. J. Lee, J. S. Park, S. H. Moon, Y. S. Kang, Y. W. Choi, and M. S. Kang, "Pore-filled anion-exchange membranes for non-aqueous redox flow batteries with dual-metal-complex redox shuttles", J. Membr. Sci., 454, 44 (2014). https://doi.org/10.1016/j.memsci.2013.11.051
- D. Chen, M. A. Hickner, E. Agar, and E. C. Kumbur, "Optimizing membrane thickness for vanadium redox flow batteries", J. Membr. Sci., 437, 108 (2013). https://doi.org/10.1016/j.memsci.2013.02.007