DOI QR코드

DOI QR Code

Polymer/Inorganic Nanohybrid Membrane on Lithium Metal Electrode: Effective Control of Surficial Growth of Lithium Layer and Its Improved Electrochemical Performance

리튬 금속 전극상 고분자/무기물 나노복합막 형성: 리튬층의 효과적 표면성장 제어 및 전기화학적 특성 향상

  • Jeong, Yohan (Department of Chemical Engineering, Kwangwoon University) ;
  • Seok, Dohyeong (Department of Chemical Engineering, Kwangwoon University) ;
  • Lee, Sanghyun (Department of Chemical Engineering, Kwangwoon University) ;
  • Shin, Weon Ho (Department of Electronic Material Engineering, Kwangwoon University) ;
  • Sohn, Hiesang (Department of Chemical Engineering, Kwangwoon University)
  • 정요한 (광운대학교 화학공학과) ;
  • 석도형 (광운대학교 화학공학과) ;
  • 이상현 (광운대학교 화학공학과) ;
  • 신원호 (광운대학교 전자재료공학과) ;
  • 손희상 (광운대학교 화학공학과)
  • Received : 2020.01.15
  • Accepted : 2020.01.27
  • Published : 2020.02.29

Abstract

Polymer/inorganic composites were used as a protective layer of lihitum metal electrode for effective suppression of lithium dendrite. PVDF-HFP was used as an polymer material and TiO2 nanoparticle was used as an inorganic material. PVDF-HFP is a highly flexible polymer that acts as a matrix of inorganic materials while TiO2 nanoparticle improves the mechanical strength and ion conductivity of the protective layer. The as-synthesized protective hybrid membrane exhibited good dispersion of TiO2 in the PVDF-HFP matrix by SEM, AFM and XRD analyses. Furthermore, the electrochemical analysis showed that the polymer-inorganic composite retained high coulombic efficiency of 80% and low overpotential, less than 20 mV until the 100th cycles due to the improved mechanical properties and ion conductivity in comparison to the control sample (untreated and PVDF-HFP polymers/Cu).

리튬 덴드라이트의 효과적인 억제를 위해 유/무기 복합체를 리튬메탈 전극의 보호층으로 사용하였다. 유기물로는 PVDF-HFP가 사용되었으며 무기물로는 TiO2가 사용되었다. 유기물로 사용된 PVDF-HFP는 높은 유연성을 가지는 고분자로서 무기물의 matrix 역할을 하며, 무기물로 사용된 TiO2 나노입자는 보호막의 기계적 강도와 이온전도성을 향상시켜주는 역할을 하였다. 합성된 보호막은 SEM, AFM, XRD를 통하여 PVDF-HFP matrix에 TiO2가 잘 분산되어 있는 형태인 것을 확인할 수 있었다. 또한 전기화학적 분석 결과, 향상된 기계적 물성과 이온전도성으로 인해 polymer-inorganic composite은 비교 샘플(untreated 와 PVDF-HFP 보호층) 대비 100번째 사이클까지 80%의 높은 쿨롱 효율 및 20 mV 미만의 낮은 과전압을 나타내었다.

Keywords

References

  1. H. Sohn, Q. Xiao, A. Seubsai, Y. Ye, J. Lee, H. Han, S. Park, G. Chen, and Y. Lu, "Thermally robust porous bimetallic (NixPt1-x) alloy particles within carbon framework: High-performance catalysts for hydrogenation reaction and oxygen reduction", ACS Appl. Mater. Interfaces, 11, 21435 (2019). https://doi.org/10.1021/acsami.8b21661
  2. D. Seok, Y. Jeong, K. Han, D. Y. Yoon, and H. Sohn, "Recent progress of electrochemical energy devices: Metal oxide-carbon nanocomposites as materials for next-generation chemical storage for renewable energy", Sustainability, 11, 3694 (2019). https://doi.org/10.3390/su11133694
  3. D. Seok, Y. Kim, and H. Sohn, "Synthesis of $Fe_3O_4$/porous carbon composite for efficient $Cu^{2+}$ ions removal", Membr. J., 29, 308 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.308
  4. F. Dai, R. Yi, H. Yang, Y. Zhao, L. Luo, M. L. Gordin, H. Sohn, S. Chen, C. Wang, S. Zhang, and D. Wang, "Minimized volume expansion in hierarchical porous silicon upon lithiation", ACS Appl. Mater. Interfaces, 11, 13257 (2019). https://doi.org/10.1021/acsami.9b01501
  5. H. Sohn, D. H. Kim, R. Yi, D. Tang, S. E. Lee, Y. S. Jung, and D. Wang, "Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries", J. Power Sources, 334, 128 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.096
  6. D. Y. Oh, Y. E. Choi, Y. G. Lee, J. N. Park, H. Sohn, and Y. S. Jung, "All-solid lithium-ion batteries with TiS2 nanosheet and sulfide solid electrolytes", J. Mater. Chem. A, 4, 10329 (2016). https://doi.org/10.1039/C6TA01628F
  7. D. Tang, Q. Huang, R. Yi, F. Dai, M. L. Gordin, S. Hu, S. Chen, Z. Yu, H. Sohn, J. Song, and D. Wang, "Room-temperature synthesis of mesoporous $Sn/SnO_2$ composite as anode for sodium-ion batteries", Euro. J. Inorg. Chem., 2016, 1950 (2016). https://doi.org/10.1002/ejic.201501441
  8. H. Sohn, M. L. Gordin, M. Regula, D. H. Kim, Y. S. Jung, J. Song, and D. Wang, "Porous spherical polyacrylonitrile-carbon nanocomposite with high loading of sulfur Li-S batteries", J. Power Sources, 302, 70 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.013
  9. Y. Gu, A. Wu, H. Sohn, C. Nicoletti, Z. Iqbal, and J. F. Federici, "Fabrication of rechargeable lithium-ion batteries using water-based inkjet printed cathodes", J. Manufactur. Processes, 20, 198 (2015). https://doi.org/10.1016/j.jmapro.2015.08.003
  10. J. Song, M. L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, J. Lu, Y. Ren, Y. Duan, and D. Wagn, "Strong lithium polysulfide chemisorption on electroactive sites of nigrogen-doped carbon enables high-performance lithium-sulfur battery cathodes", Angew. Chem. Int. Ed., 54, 4325 (2015). https://doi.org/10.1002/anie.201411109
  11. H. Sohn, M. L. Gordin, T. Xu, S. Chen, D. Lv, J. Song, A. Manivannan, and D. Wang, "Porous spherical carbon/sulfur nanocomposites by aerosol-assisted synthesis: The effect of pore structure and morphology on their electorchemical performance as lithium-sulfur battery cathodes", ACS Appl. Mater. Interfaces, 6, 7596 (2014). https://doi.org/10.1021/am404508t
  12. C. Lei, Z. Chen, H. Sohn, X. Wang, Z. Le, D. Wang, M. Shen, G. Wang, and Y. Lu, "Better lithium-ion storage materials made through hierarchical assemblies of active nanorods and nanocrystals", J. Mater. Chem. A, 2, 17536 (2014). https://doi.org/10.1039/C4TA03715D
  13. B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, and J. Zhu, "Poly (dimethylsiloxane) thin film as a stable interffacial layer for high-performance lithium-metal battery anodes", Adv., 29, 1603755 (2017).
  14. H. Sohn, "Deposition of functional organic and inorganic layer on the cathode for the improved electrochemical performance of Li-S battery", Korean Chem. Eng. Res., 55, 483 (2017). https://doi.org/10.9713/kcer.2017.55.4.483
  15. K. B. Hwang, H. Sohn, and S. H. Yoon, "Mesostructured niobium-doped titanium oxide-carbon ($Nb-TiO_2-C$) composite as an anode for high-performance lithium-ion batteries", J. Power Sources, 378, 225 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.055
  16. K. M. Kim, N. G. Park, K. S. Ryu, and S. H. Chang, "Characteristic of $PVDF-HFP/TiO_2$ composite membrane electrolytes prepared by phase inversion and conventional casting methods", Electrochim. Acta, 51, 5636 (2006). https://doi.org/10.1016/j.electacta.2006.02.038
  17. J. Lang, J. Song, L. Qi, Y. Luo, X. Luo, and H. Wu, "Uniform lithium deposition induced by polyacrylonitrile submicron fiber array for stable lithium metal anode", ACS Appl. Mater. Interfaces, 9, 10360 (2017). https://doi.org/10.1021/acsami.7b00181
  18. H. Sohn, D. Kim, J. Lee, and S. Yoon, "Facile synthesis of mesostructured $TiO_2$-graphitized carbon ($TiO_2-gC$) composite through the hydrothermal process and its application for the anode of lithium ion battery", RSC Adv., 6, 39484 (2016). https://doi.org/10.1039/C6RA01614F
  19. J. Wilson, G. Ravi, and M. A. Kulandainathan, "Electrochemical studies on inert filler incorporated poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) composite electroltyes", Polimeros., 16, 88 (2006). https://doi.org/10.1590/S0104-14282006000200006
  20. X. B. Cheng, R. Zhang, C. Z. Zhang, and Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: A review", Chem. Rev., 117, 10403 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
  21. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J. G. Zhang, "Lithium metal anodes for rechargeable batteries", Energy Environ. Sci., 7, 513 (2014). https://doi.org/10.1039/C3EE40795K