References
- H. Sohn, Q. Xiao, A. Seubsai, Y. Ye, J. Lee, H. Han, S. Park, G. Chen, and Y. Lu, "Thermally robust porous bimetallic (NixPt1-x) alloy particles within carbon framework: High-performance catalysts for hydrogenation reaction and oxygen reduction", ACS Appl. Mater. Interfaces, 11, 21435 (2019). https://doi.org/10.1021/acsami.8b21661
- D. Seok, Y. Jeong, K. Han, D. Y. Yoon, and H. Sohn, "Recent progress of electrochemical energy devices: Metal oxide-carbon nanocomposites as materials for next-generation chemical storage for renewable energy", Sustainability, 11, 3694 (2019). https://doi.org/10.3390/su11133694
-
D. Seok, Y. Kim, and H. Sohn, "Synthesis of
$Fe_3O_4$ /porous carbon composite for efficient$Cu^{2+}$ ions removal", Membr. J., 29, 308 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.308 - F. Dai, R. Yi, H. Yang, Y. Zhao, L. Luo, M. L. Gordin, H. Sohn, S. Chen, C. Wang, S. Zhang, and D. Wang, "Minimized volume expansion in hierarchical porous silicon upon lithiation", ACS Appl. Mater. Interfaces, 11, 13257 (2019). https://doi.org/10.1021/acsami.9b01501
- H. Sohn, D. H. Kim, R. Yi, D. Tang, S. E. Lee, Y. S. Jung, and D. Wang, "Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries", J. Power Sources, 334, 128 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.096
- D. Y. Oh, Y. E. Choi, Y. G. Lee, J. N. Park, H. Sohn, and Y. S. Jung, "All-solid lithium-ion batteries with TiS2 nanosheet and sulfide solid electrolytes", J. Mater. Chem. A, 4, 10329 (2016). https://doi.org/10.1039/C6TA01628F
-
D. Tang, Q. Huang, R. Yi, F. Dai, M. L. Gordin, S. Hu, S. Chen, Z. Yu, H. Sohn, J. Song, and D. Wang, "Room-temperature synthesis of mesoporous
$Sn/SnO_2$ composite as anode for sodium-ion batteries", Euro. J. Inorg. Chem., 2016, 1950 (2016). https://doi.org/10.1002/ejic.201501441 - H. Sohn, M. L. Gordin, M. Regula, D. H. Kim, Y. S. Jung, J. Song, and D. Wang, "Porous spherical polyacrylonitrile-carbon nanocomposite with high loading of sulfur Li-S batteries", J. Power Sources, 302, 70 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.013
- Y. Gu, A. Wu, H. Sohn, C. Nicoletti, Z. Iqbal, and J. F. Federici, "Fabrication of rechargeable lithium-ion batteries using water-based inkjet printed cathodes", J. Manufactur. Processes, 20, 198 (2015). https://doi.org/10.1016/j.jmapro.2015.08.003
- J. Song, M. L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, J. Lu, Y. Ren, Y. Duan, and D. Wagn, "Strong lithium polysulfide chemisorption on electroactive sites of nigrogen-doped carbon enables high-performance lithium-sulfur battery cathodes", Angew. Chem. Int. Ed., 54, 4325 (2015). https://doi.org/10.1002/anie.201411109
- H. Sohn, M. L. Gordin, T. Xu, S. Chen, D. Lv, J. Song, A. Manivannan, and D. Wang, "Porous spherical carbon/sulfur nanocomposites by aerosol-assisted synthesis: The effect of pore structure and morphology on their electorchemical performance as lithium-sulfur battery cathodes", ACS Appl. Mater. Interfaces, 6, 7596 (2014). https://doi.org/10.1021/am404508t
- C. Lei, Z. Chen, H. Sohn, X. Wang, Z. Le, D. Wang, M. Shen, G. Wang, and Y. Lu, "Better lithium-ion storage materials made through hierarchical assemblies of active nanorods and nanocrystals", J. Mater. Chem. A, 2, 17536 (2014). https://doi.org/10.1039/C4TA03715D
- B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, and J. Zhu, "Poly (dimethylsiloxane) thin film as a stable interffacial layer for high-performance lithium-metal battery anodes", Adv., 29, 1603755 (2017).
- H. Sohn, "Deposition of functional organic and inorganic layer on the cathode for the improved electrochemical performance of Li-S battery", Korean Chem. Eng. Res., 55, 483 (2017). https://doi.org/10.9713/kcer.2017.55.4.483
-
K. B. Hwang, H. Sohn, and S. H. Yoon, "Mesostructured niobium-doped titanium oxide-carbon (
$Nb-TiO_2-C$ ) composite as an anode for high-performance lithium-ion batteries", J. Power Sources, 378, 225 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.055 -
K. M. Kim, N. G. Park, K. S. Ryu, and S. H. Chang, "Characteristic of
$PVDF-HFP/TiO_2$ composite membrane electrolytes prepared by phase inversion and conventional casting methods", Electrochim. Acta, 51, 5636 (2006). https://doi.org/10.1016/j.electacta.2006.02.038 - J. Lang, J. Song, L. Qi, Y. Luo, X. Luo, and H. Wu, "Uniform lithium deposition induced by polyacrylonitrile submicron fiber array for stable lithium metal anode", ACS Appl. Mater. Interfaces, 9, 10360 (2017). https://doi.org/10.1021/acsami.7b00181
-
H. Sohn, D. Kim, J. Lee, and S. Yoon, "Facile synthesis of mesostructured
$TiO_2$ -graphitized carbon ($TiO_2-gC$ ) composite through the hydrothermal process and its application for the anode of lithium ion battery", RSC Adv., 6, 39484 (2016). https://doi.org/10.1039/C6RA01614F - J. Wilson, G. Ravi, and M. A. Kulandainathan, "Electrochemical studies on inert filler incorporated poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) composite electroltyes", Polimeros., 16, 88 (2006). https://doi.org/10.1590/S0104-14282006000200006
- X. B. Cheng, R. Zhang, C. Z. Zhang, and Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: A review", Chem. Rev., 117, 10403 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J. G. Zhang, "Lithium metal anodes for rechargeable batteries", Energy Environ. Sci., 7, 513 (2014). https://doi.org/10.1039/C3EE40795K