DOI QR코드

DOI QR Code

ON THE CONHARMONIC CURVATURE TENSOR OF A LOCALLY CONFORMAL ALMOST COSYMPLECTIC MANIFOLD

  • Abood, Habeeb M. (Department of Mathematics College of Education for Pure Sciences University of Basrah) ;
  • Al-Hussaini, Farah H. (Department of Mathematics College of Education for Pure Sciences University of Basrah)
  • 투고 : 2019.01.04
  • 심사 : 2019.05.28
  • 발행 : 2020.01.31

초록

This paper aims to study the geometrical properties of the conharmonic curvature tensor of a locally conformal almost cosymplectic manifold. The necessary and sufficient conditions for the conharmonic curvature tensor to be flat, the locally conformal almost cosymplectic manifold to be normal and an η-Einstein manifold were determined.

키워드

참고문헌

  1. H. M. Abood and Y. A. Abdulameer, Conharmonically flat Vaisman-Gray manifold, American J. Math. Statistics 7 (2017), no. 1, 38-43.
  2. H. M. Abood and Y. A. Abdulameer, Vaisman-Gray manifold of pointwise holomorphic sectional conharmonic tensor, Kyungpook Math. J. 58 (2018), no. 4, 789-799. https://doi.org/10.5666/KMJ.2018.58.4.789
  3. H. M. Abood and F. H. J. Al-Hussaini, Locally conformal almost cosymplectic manifold of $\phi$-holomorphic sectional conharmonic curvature tensor, Eur. J. Pure Appl. Math. 11 (2018), no. 3, 671-681. https://doi.org/10.29020/nybg.ejpam.v11i3.3261
  4. D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geometry 1 (1967), 331-345. http://projecteuclid.org/euclid.jdg/1214428097
  5. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2002. https://doi.org/10.1007/978-1-4757-3604-5
  6. E. Cartan, Riemannian geometry in an orthogonal frame, with a preface to the Russian edition by S. P. Finikov, translated from the 1960 Russian edition by Vladislav V. Goldberg and with a foreword by S. S. Chern, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. https://doi.org/10.1142/9789812799715
  7. U. C. De, R. N. Singh, and S. K. Pandey, On the Conharmonic Curvature Tensor of Generalized Sasakian-Space-Forms, J. ISRN Geometry 2012 (2012), Article ID 876276, 14 pages. http://dx.doi.org/10.5402/2012/876276
  8. S. Ghosh, U. C. De, and A. Taleshian, Conharmonic curvature tensor on N(K)-contact metric manifolds, ISRN Geometry 2011 (2011), Article ID 423798, 11 pages. http://dx.doi.org/10.5402/2011/423798
  9. S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373-382. http://projecteuclid.org/euclid.pjm/1102977874 https://doi.org/10.2140/pjm.1969.31.373
  10. L. A. Ignatochkina and H. M. Abood, On Vaisman-Gray manifold with vanishing conharmonic curvature tensor, Far East J. Math. Sci. 101 (2017), no. 10, 2271-2284.
  11. Y. Ishii, On conharmonic transformations, Tensor (N.S.) 7 (1957), 73-80.
  12. S. V. Kharitonova, On the geometry of locally conformal almost cosymplectic manifolds, Math. Notes 86 (2009), no. 1-2, 121-131; translated from Mat. Zametki 86 (2009), no. 1, 126-138. https://doi.org/10.1134/S0001434609070116
  13. V. F. Kirichenko, Methods of generalized Hermitian geometry in the theory of almost contact manifolds, in Problems of geometry, Vol. 18 (Russian), 25-71, 195, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986.
  14. V. F. Kirichenko, Differential-Geometric Structures on Manifolds, Pechatnyi Dom, Odessa, 2013.
  15. V. F. Kirichenko and S. V. Kharitonova, On the geometry of normal locally conformal almost cosymplectic manifolds, Math. Notes 91 (2012), no. 1-2, 34-45. https://doi.org/10.1134/S000143461201004X
  16. V. F. Kirichenko and A. R. Rustanov, Differential geometry of quasi Sasakian manifolds, Sb. Math. 193 (2002), no. 7-8, 1173-1201; translated from Mat. Sb. 193 (2002), no. 8, 71-100. https://doi.org/10.1070/SM2002v193n08ABEH000675
  17. Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), no. 1, 73-87. https://doi.org/10.4064/cm-57-1-73-87
  18. D. G. Prakasha and B. S. Hadimani, On the conharmonic curvature tensor of Kenmotsu manifolds with generalized Tanaka-Webster connection, Miskolc Math. Notes 19 (2018), no. 1, 491-503. https://doi.org/10.18514/mmn.2018.1596