References
- R. Ayoub, Euler and the zeta function, Amer. Math. Monthly 81 (1974), 1067-1086. https://doi.org/10.2307/2319041
- B. C. Berndt, Modular transformations and generalizations of several formulae of Ramanujan, Rocky Mountain J. Math. 7 (1977), no. 1, 147-189. https://doi.org/10.1216/RMJ-1977-7-1-147
- B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 303/304 (1978), 332-365. https://doi.org/10.1515/crll.1978.303-304.332
- B. C. Berndt, Ramanujan's Notebooks. Part II, Springer-Verlag, New York, 1989. https://doi.org/10.1007/978-1-4612-4530-8
- B. C. Berndt, Ramanujan's Notebooks. Part III, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4612-0965-2
- G. H. Hardy, P. V. Seshu Aiyar, and B. M. Wilson, Collected papers of Srinivasa Ramanujan, Cambridge University Press, 1927,
- A. Hurwitz, Mathematische Werke. Bd. I, Herausgegeben von der Abteilung fur Mathematik und Physik der Eidgenossischen Technischen Hochschule in Zurich, Birkhauser Verlag, Basel, 1962.
- Y. Komori, K. Matsumoto, and H. Tsumura, Infinite series involving hyperbolic functions, Lith. Math. J. 55 (2015), no. 1, 102-118. https://doi.org/10.1007/s10986-015-9268-x
- C. B. Ling, On summation of series of hyperbolic functions, SIAM J. Math. Anal. 5 (1974), 551-562. https://doi.org/10.1137/0505055
- C. B. Ling, On summation of series of hyperbolic functions. II, SIAM J. Math. Anal. 6 (1975), 129-139. https://doi.org/10.1137/0506013
- H. Tsumura, On certain analogues of Eisenstein series and their evaluation formulas of Hurwitz type, Bull. Lond. Math. Soc. 40 (2008), no. 2, 289-297. https://doi.org/10.1112/blms/bdn014
- H. Tsumura, Evaluation of certain classes of Eisenstein-type series, Bull. Aust. Math. Soc. 79 (2009), no. 2, 239-247. https://doi.org/10.1017/S0004972708001159
- H. Tsumura, Analogues of the Hurwitz formulas for level 2 Eisenstein series, Results Math. 58 (2010), no. 3-4, 365-378. https://doi.org/10.1007/s00025-010-0058-9
- H. Tsumura, Analogues of level-N Eisenstein series, Pacific J. Math. 255 (2012), no. 2, 489-510. https://doi.org/10.2140/pjm.2012.255.489
- H. Tsumura, Double series identities arising from Jacobi's identity of the theta function, Results Math. 73 (2018), no. 1, Art. 10, 12 pp. https://doi.org/10.1007/s00025-018-0770-4
- C. Xu, Some evaluation of infinite series involving trigonometric and hyperbolic functions, Results Math. 73 (2018), no. 4, Art. 128, 18 pp. https://doi.org/10.1007/s00025-018-0891-9