DOI QR코드

DOI QR Code

LIMITS OF TRIVIAL BUNDLES ON CURVES

  • Received : 2018.12.10
  • Accepted : 2019.08.22
  • Published : 2020.01.31

Abstract

We extend the work of A. Beauville on rank 2 vector bundles on a smooth curve in several directions. We give families of examples with large dimension, add new existence and non-existence results and prove the existence of indecomposable limits with arbitrary rank. To construct the large dimensional families we use the examples of limits of rank 2 trivial bundles on ℙ2 and ℙ3 due to C. Banica. We also consider a more flexible notion: limits of trivial bundles on nearby curves.

Keywords

Acknowledgement

Supported by : MIUR, GNSAGA

This work was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

  1. E. Arbarello, A. Bruno, G. Farkas, and G. Sacca, Explicit Brill-Noether-Petri general curves, Comment. Math. Helv. 91 (2016), no. 3, 477-491. https://doi.org/10.4171/CMH/392
  2. E. Arbarello and M. Cornalba, Footnotes to a paper of Beniamino Segre, Math. Ann. 256 (1981), no. 3, 341-362. https://doi.org/10.1007/BF01679702
  3. E. Arbarello, M. Cornalba, and P. A. Griffiths, Geometry of algebraic curves. Volume II, Grundlehren der Mathematischen Wissenschaften, 268, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-540-69392-5
  4. M. Atiyah, On the Krull-Schmidt theorem with application to sheaves, Bull. Soc. Math. France 84 (1956), 307-317. https://doi.org/10.24033/bsmf.1475
  5. M. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414-452. https://doi.org/10.1112/plms/s3-7.1.414
  6. E. Ballico, A remark on linear series on general k-gonal curves, Boll. Un. Mat. Ital. A (7) 3 (1989), no. 2, 195-197.
  7. C. Banica, Topologisch triviale holomorphe Vektorbundel auf $P^n$ (C), J. Reine Angew. Math. 344 (1983), 102-119.
  8. A. Beauville, Limits of the trivial bundle on a curve, Epijournal Geom. Algebrique 2 (2018), Art. 9, 6 pp.
  9. S. Casalaina-Martin, D. Jensen, and R. Laza, The geometry of the ball quotient model of the moduli space of genus four curves, in Compact moduli spaces and vector bundles, 107-136, Contemp. Math., 564, Amer. Math. Soc., Providence, RI. https://doi.org/10.1090/conm/564/11153
  10. M. Coppens and G. Martens, Linear series on a general k-gonal curve, Abh. Math. Sem. Univ. Hamburg 69 (1999), 347-371. https://doi.org/10.1007/BF02940885
  11. M. Coppens and G. Martens, Linear series on 4-gonal curves, Math. Nachr. 213 (2000), 35-55. https://doi.org/10.1002/(SICI)1522-2616(200005)213:1<35::AID-MANA35>3.0.CO;2-Z
  12. D. Eisenbud and J. Harris, Limit linear series: basic theory, Invent. Math. 85 (1986), no. 2, 337-371. https://doi.org/10.1007/BF01389094
  13. M. Fedorchuk, The final log canonical model of the moduli space of stable curves of genus 4, Int. Math. Res. Not. IMRN 2012 (2012), no. 24, 5650-5672. https://doi.org/10.1093/imrn/rnr242
  14. W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2) 90 (1969), 542-575. https://doi.org/10.2307/1970748
  15. J. Harris, Theta-characteristics on algebraic curves, Trans. Amer. Math. Soc. 271 (1982), no. 2, 611-638. https://doi.org/10.2307/1998901
  16. J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23-86. https://doi.org/10.1007/BF01393371
  17. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
  18. H. Kim, Chow stability of canonical genus 4 curves, Bull. Korean Math. Soc. 50 (2013), no. 3, 1029-1040. https://doi.org/10.4134/BKMS.2013.50.3.1029
  19. H. Lange, Zur Klassifikation von Regelmannigfaltigkeiten, Math. Ann. 262 (1983), no. 4, 447-459. https://doi.org/10.1007/BF01456060
  20. H. Lange, Some geometrical aspects of vector bundles on curves, in Topics in algebraic geometry (Guanajuato, 1989), 53-74, Aportaciones Mat. Notas Investigacion, 5, Soc. Mat. Mexicana, Mexico, 1992.
  21. H. Lange and M. S. Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math. Ann. 266 (1983), no. 1, 55-72. https://doi.org/10.1007/BF01458704
  22. G. Martens and F.-O. Schreyer, Line bundles and syzygies of trigonal curves, Abh. Math. Sem. Univ. Hamburg 56 (1986), 169-189. https://doi.org/10.1007/BF02941515
  23. J. Rojas and I. Vainsencher, Canonical curves in ${\mathbb{P}^3}$, Proc. London Math. Soc. (3) 85 (2002), no. 2, 333-366. https://doi.org/10.1112/S0024611502013503
  24. U. Schafft, Nichtsepariertheit instabiler Rang-2-Vektorbundel auf $P_2$, J. Reine Angew. Math. 338 (1983), 136-143. https://doi.org/10.1515/crll.1983.338.136
  25. S. A. Strmme, Deforming vector bundles on the projective plane, Math. Ann. 263 (1983), no. 3, 385-397. https://doi.org/10.1007/BF01457140
  26. M. Teixidor i Bigas, Half-canonical series on algebraic curves, Trans. Amer. Math. Soc. 302 (1987), no. 1, 99-115. https://doi.org/10.2307/2000899
  27. M. Teixidor i Bigas, The divisor of curves with a vanishing theta-null, Compositio Math. 66 (1988), no. 1, 15-22.