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LIMITS OF TRIVIAL BUNDLES ON CURVES

Edoardo Ballico

Abstract. We extend the work of A. Beauville on rank 2 vector bundles

on a smooth curve in several directions. We give families of examples with

large dimension, add new existence and non-existence results and prove
the existence of indecomposable limits with arbitrary rank. To construct

the large dimensional families we use the examples of limits of rank 2
trivial bundles on P2 and P3 due to C. Banica. We also consider a more

flexible notion: limits of trivial bundles on nearby curves.

1. Introduction

Let X be a smooth and connected curve defined over an algebraically closed
field K with characteristic 0. For any vector bundle F on X let Σ(F ) denote
the set of all rank 2 vector bundles on X which are a flat limit of a family of
vector bundles whose general fiber is isomorphic to F , i.e., the set of all vector
bundles E on X such that there are a connected and affine curve B, o ∈ B and
a vector bundle G on X × B such that G|X × {o} ∼= E and G|X × {t} ∼= F
for a general t ∈ B (up to the identification of X and X × {a}, a ∈ B). If
F = O⊕rX for some r we say that E is a limit of trivial bundles. Almost always

in this paper we take rank(E) = 2 and F = O⊕2X , i.e., the case considered by
A. Beauville in [8]. For curves with positive genera we also consider bundles
which are limits of trivial bundles on different curves in the following sense.

We fix X ∈Mg (withM1 just a short-hand for a reasonable moduli space or
moduli stack of elliptic curves) and ask which are the rank r ≥ 2 vector bundles
on X which are limits of trivial vector bundles as vector bundles over a subset
ofMg, i.e., the vector bundles E on X for which there exists (T, π, C, E , o) with
T an integral quasi-projective variety, o ∈ T , π : C → T is a smooth morphism
with as fibers genus g curves, E is a vector bundle on C, Eπ−1(t)

∼= O⊕rπ−1(t) for

all t ∈ T \{o}, π−1(o) ∼= X and the latter isomorphism identify E and E|π−1(o).
In this case we say that E is a limit of trivial bundles on nearby curves.
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For any smooth curve X let Σ′(X, r) (resp. Σ′′(X, r)) denote the set of all
isomorphism classes of rank r indecomposable vector bundles on X which are
limits of trivial bundles (resp. limit of trivial bundles on nearby curves).

Remark 1.1. As in [8, Remark 1] we see that each E 6= O⊕2X which is a limit of
trivial bundles on nearby curves fits in an exact sequence

(1) 0→ L→ E → L∨ → 0,

where L is a line bundle of positive degree and h0(L) ≥ 2. Thus a necessary
condition for the existence of an indecomposable rank 2 vector bundle E which
is a limit of trivial bundles in this weaker sense is the existence of a line bundle
L on X such that h1(L⊗2) > 0 and h0(L) ≥ 2. No such bundle exists on a
general X ∈Mg ([3, Ch. 21, Proposition 6.7]). In a similar way we exclude all
X ∈ M2 and all curves of genus ≤ 1. For all cases with g ≤ 4 see Remark 5.1
and Proposition 5.2. With this weaker definition of limits of trivial bundles the
non-existence results [8, Proposition 3], Remark 5.1 and Propositions 5.2, 5.4
and 5.9 are true and their proofs require no modifications. A non-trivial vector
bundle which is a limit of trivial bundles on nearby curves is not semistable.
Thus Atiyah’s classification of vector bundles on an elliptic curve ([5]) shows
that on an elliptic curve the trivial line bundle is the only indecomposable
vector bundle limit of trivial bundles on nearby curves.

Theorem 1.2. Take L ∈ Pic(X) with deg(L) > 0. The vector bundle L⊕ L∨
is a limit of trivial bundles on nearby curves if and only if h0(L) ≥ 2.

For each E ∈ Σ′′(X, 2) the main invariant of E is the integer δ(E) := deg(L)
with L as in (1). For any rank 2 vector bundle F on a smooth curve set
s(F ) := deg(F ) − 2 deg(L), where L is a rank 1 subsheaf of F with maximal
degree ([19–21]). The integer s(F ) is often called the Segre invariant of F . If
E ∈ Σ′′(X, 2) we have s(E) = −2δ(E). Using [8, Remark 1] it is easy to see
that for each g ≥ 3 and each X ∈ Mg the sets Σ′(X, 2) and Σ′′(X, 2) are
contained in the union of finitely many algebraic varieties. Let γ′(g) (resp.
γ′′(g)) the maximal integer x such that there is X ∈Mg, an integral variety T
with dim(T ) = x and a vector bundle E on X×T such that E|X×{t} ∈ Σ′(X, 2)
(resp. E|X×{t} ∈ Σ′′(X), 2)) for all t ∈ T and for every a ∈ T there is a finite set
Sa ⊂ T such that E|X×{t} 6= E|X×{a} for all t ∈ T \Sa. Obviously γ′(g) ≤ γ′′(g).

We prove the following result.

Theorem 1.3.

lim
g→+∞

γ′(g) = +∞.

In the example needed to prove Theorem 1.3 we find T such that E|X×{t} 6=
E|X×{a} for all a, t ∈ T such that a 6= t and an explicit value for a lower
bound for γ′(g) which grows linearly with g. Thus Theorem 1.3 holds even if
we restrict to perfectly parametrized families of vector bundles, a very unusual
situation when (as here) we are looking at unstable vector bundles.
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It would be nice to study the possible triples (g, k, δ) such that there is
E ∈ Σ′(X, 2) (or E ∈ Σ′′(X, 2)) with δ(E) = δ for some smooth curve X with
genus g and with gonality k.

See Remark 4.2 and Proposition 4.4 for the construction on P2 and P3 of
indecomposable rank r bundles, r > 2.

Question 1.4. Fix integers g ≥ 2 and r ≥ 2. Is it true that a general X ∈Mg

has no indecomposable rank r vector bundle limit of trivial bundles? (or limits
of trivial bundles on nearby curves)? If this is true can we find an example
working for all r ≥ 2 and defined over Q?

For rank 2 vector bundles Question 1.4 is true. Indeed, for the first part use
[8, Proposition 5], for the second part, see [1] and use [8, Remark 1].

In the last section we explore two stronger notions of limits (or limits for
nearby curves) of trivial bundles: limits with constant cohomology or limits,
E, such that the image ev(E) of the evaluation map H0(E) ⊗ OX → E is a
subbundle of E, i.e., E/ev(E) is locally free. We consider the following topics:

(1) Find criteria of existence and/or non-existence for E ∈ Σ′(X, r) (or
E ∈ Σ′′(X, r)) such that h0(E) = r.

(2) Find criteria of existence and/or non-existence for E ∈ Σ′(X, r) (or
E ∈ Σ′′(X, r)) such that E/ev(E) is locally free.

We conclude the introduction with the following questions.

Question 1.5. Is it true that for n� 0, O⊕2Pn is the only rank 2 vector bundle
on Pn which is a limit of the trivial bundle?

Question 1.6. Fix an integer n ≥ 4. Is it true that, for r � n, we can
construct an indecomposable rank r vector bundle on Pn which is a limit of
the trivial bundle?

Question 1.7. Is
lim

g→+∞
γ′(g)/g = +∞?

Acknowledgement. I want to thank the referee for catching some critical
typos.

2. Preliminaries

Let X be a smooth and connected projective curve of genus g ≥ 0. For any
vector bundle F on an integral projective variety Y such that F is a limit of
trivial vector bundles on varieties near Y (and in particular if F is a limit of
trivial vector bundles on Y ) we have det(F ) ∼= OY . Thus F ∼= F∨ if F has
rank 2. In particular E ∼= E∨ for all E ∈ Σ′′(X, 2).

For any rank r > 0 vector bundle E on X let µ(E) := deg(E)/r denote
the slope of E. If E is semistable set µ+(E) = µ−(E) := µ(E). If E is not
semistable let E1 ⊂ · · · ⊂ Es−1 ⊂ Es = E, s ≥ 2, be its Harder-Narasimhan fil-
tration; set µ+(E) := µ(E1) and µ−(E) := µ(Es/Es−1). If E is not semistable
we have µ−(E) < µ(E) < µ+(E).
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Lemma 2.1. Consider an exact sequence

(2) 0→ F → E → G→ 0

of vector bundles on X. If µ+(G) + 2g − 2 < µ−(F ), then (2) splits.

Proof. It is sufficient to prove that H1(F ⊗ G∨) = 0, i.e., by duality it is
sufficient to prove that there are no non-zero maps F → G ⊗ ωX . We have
µ+(G⊗ωX) = µ+(G)+2g−2. Use that h0(A⊗B∨) = 0 if A, B are semistable
vector bundles and µ(B) > µ(A). �

Corollary 2.2. Assume g > 0. Let E be an indecomposable rank r vector
bundle on X. Then µ+(E)− µ−(E) ≤ (r − 1)(2g − 2).

Proof. Since g > 0, the corollary is true if E is semistable. Now assume that
E is not semistable. Let E1 ⊂ · · · ⊂ Es−1 ⊂ Es = E, s ≥ 2, be the Harder-
Narasimhan filtration of E. Since E is indecomposable, no exact sequence

0→ Ei → E → E/Ei → 0,

i = 1, . . . , s− 1, splits. By Lemma 2.1 we have µ−(Ei) ≤ µ+(E/Ei) + 2g − 2.
We have µ−(Ei) = µ(Ei/Ei−1), with the convention E0 = 0 and µ+(E/Ei) =
µ(Ei+1/Ei). Since µ(E1) = µ+(E) and µ−(E) = µ(Es/Es−1), we get µ+(E) ≤
µ−(E) + (s− 1)(2g − 2). Use that s ≤ r. �

Corollary 2.3. We have µ+(E) ≤ dr/2e(2g − 2), µ−(E) ≥ −dr/2e(2g − 2)
and µ+(E)− µ−(E) ≤ (r − 1)(2g − 2) for every E ∈ Σ′′(X, r).

Proof. Since E ∈ Σ′′(X, r), we have deg(E) = 0. If E1 ⊂ · · · ⊂ Es−1 ⊂ Es = E
is the Harder-Narasimhan filtration of E we have s ≤ r. Apply Corollary
2.2. �

Remark 2.4. Corollary 2.3 implies that for all X and r the set Σ′′(X, r) is
contained in finitely many algebraic varieties. This is not true for any projective
manifold of dimension 2 or 3 (see [7] for the case P2 and P3 and Remark 3.6
for the case of surfaces and threefolds). One cannot easily extend Remark 3.6
to the case of all projective varieties since conjecturally for mG0 every rank 2
vector bundle on Pm splits.

Remark 2.5. Let Y be a smooth curve such that there is a rank 2 indecompos-
able vector bundle F on Y which is a limit of trivial bundles. Let f : X → Y
be a finite covering with X a smooth curve. Then f∗(F ) is indecomposable
and it is a limit of trivial bundles ([8, Remark 3]).

Remark 2.6. Let E, F and G be vector bundles on the curve X. If E ∈ Σ(F )
and F ∈ Σ(G), then E ∈ Σ(G).

Lemma 2.7. Let Y be an integral projective curve, L a line bundle on Y with
positive degree and E, F vector bundles on Y which are extensions of L∨ by L.
If E ∼= F , then the extension giving E is proportional to the extension giving
F .
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Proof. Assume the existence of an isomorphism f : E → F . Since deg(L) > 0,
(1) is the Harder-Narasimhan filtration of E (and similarly for F ). Thus f
sends the line subbundle L′ of E isomorphic to L isomorphically onto the line
subbundle L′′ of F isomorphic to L. Thus f induces an isomorphism between
E/L′ ∼= L∨ and F/L′′ ∼= L∨. Use that h0(End(L)) = h0(End(L∨)) = 1. �

3. Limits coming from P2 and P3

We use the indecomposable rank 2 vector bundles on P2 and P3 constructed
in [7]. See also [24] for an earlier example (k = 1 for P2) and [25] for the
deformation theory of these vector bundles on the plane.

3.1. Limits in P2

Fix an indecomposable rank 2 vector bundle F on P2, which is a limit of
trivial vector bundles and it is indecomposable ([7,24,25]). Let k be the unique
positive integer such that F fits in an exact sequence

(3) 0→ OP2(k)→ F → IZ(−k)→ 0

with Z a complete intersection zero-dimensional scheme of 2 curves of degree
k and deg(Z) = k2 ([7, 25]; see in particular [7, Lemma 4] to see that Z is
always the complete intersection of 2 curves of degree k). We call N(k) the set
of all indecomposable rank 2 vector bundles on P2 which are limits of trivial
bundles and with maximal degree line subbundle isomorphic to OP2(k). Thus
each element of N(k) fits in (3) for some Z.

Proposition 3.1. Fix integers k > 0 and d ≥ 2k+1. Let Y ⊂ P2 be an integral
projective curve of degree d. Let NY (k) be the set of all F ∈ N(k) fitting in (3)
for some Z with Z ∩ Y = ∅. Then

(1) F|Y is indecomposable for each F ∈ NY (k).
(2) If F,G ∈ NY (k) and G 6= F , then G|Y 6= F|Y .

Proof. Take F ∈ NY (k) and set E := F|Y . Since F ∈ NY (k), E fits in an
exact sequence (3) with Z ∩ Y = ∅. Thus restricting (3) to Y we get that E
is an extension of OY (−k) by OY (k). Thus to prove that E is indecomposable
it is sufficient to prove that h0(E(−k)) = 0. Since F is indecomposable, we
have h0(F (−k)) = 0. Thus to get h0(E(−k)) = 0 it is sufficient to prove
that h1(F (−k − d)) = 0. Since F ∼= F∨, duality gives h1(F (−k − d)) =
h1(F (k + d − 3)). By (3) we have h1(F (k + d − 3)) = 0 if h1(IZ(d − 3)) = 0.
Since Z is the complete intersection of 2 plane curves of degree k, we have an
exact sequence

(4) 0→ OP2(−2k)→ OP2(−k)⊕2 → IZ → 0.

From (4) we get h1(IZ(t)) = 0 for all t ≥ 2k − 2. From (4) and (3) we get the
following remark.

Observation 1. We have h1(E(t)) = 0 for all E ∈ N(k) and all t ≥ 3k − 2.
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Since Z has codimension 2, we have h2(IZ(x)) = h2(OP2(x)) for every inte-
ger x. Thus we have the following remark.

Observation 2. We have h2(E(x)) = 0 for all E ∈ N(k) and all x ≥ k − 2.

Now we take F,G ∈ NY (k) such that F 6= G. Since F and G are not
semistable, every map f : F → G sends the Harder-Narasimhan filtration
(3) of F into the Harder-Narasimhan filtration of G. Since G ∼= G∨, we have
F⊗G∨ ∼= F⊗G. Since F 6= G we see that f is the composition of the surjection
F → IZ(−k) and a map j : IZ(−k)→ OP2(k). Since Z has codimension 2 the
set of all j’s is the vector space H0(OP2(2k)). Thus it is sufficient to prove the
surjectivity of the restriction map H0(F ⊗ G) → H0(F|Y ⊗ G|Y ). Thus it is

sufficient to prove that h1(F ⊗G(−d)) = 0. By duality it is sufficient to prove
h1(F ⊗G(d− 3)) = 0. By (3) it is sufficient to prove that h1(G(k + d− 3)) =
h1(IZ ⊗ G(d − k − 3)) = 0. By Observation 1 we have h1(G(k + d − 3)) = 0,
because d ≥ 2k + 1. Tensoring (4) by G(d − k − 3) and using Observations 1
and 2 we get h1(IZ ⊗G(d− k − 3)) = 0 if d ≥ 3k − 2. �

Remark 3.2. Let Y ⊂ P2 be an integral plane curve. The set NY (k) defined in
the statement of Proposition 3.1 is a non-empty open subset of N(k). Now we
fix E ∈ N(k). There are many Y such that E ∈ NY (k). If we are interested in
a pair (E, Y ) with E ∈ N(k) \NY (k) at least we may say that g∗(E) ∈ NY (k)
for a general g ∈ Aut(P2).

3.2. Limits in P3

Following [7] for any rank 2 vector bundle F on P3 which is a limit of trivial
bundles there is a unique integer d ≥ 0 such that F fits in an exact sequence

(5) 0→ OP3(k)→ F → IZ(−k)→ 0

with Z ⊂ P3 a complete intersection curve of degree k2 and with ωZ ∼=
OZ(−2k − 4) ([7, Lemma 4]). Call M(k) the set of all isomorphism classes
of rank 2 vector bundles on P3 fitting in (5) for some Z and which are limits
of trivial bundles. By [7, Proposition 2] each M(k) has a natural structure of
algebraic variety, M(0) = {O⊕2P3 }, M(1) = ∅ and M(k) 6= ∅ for each k ≥ 2.
C. Bǎnicǎ gave a complete description of M(2) ([7, §3.2]). Fix any k ≥ 2 and
any smooth curve X ⊂ P3. Take F ∈ M(k) fitting in (5) and set E := F|X .
Obviously E is a limit of trivial bundles. If Z ∩X = ∅ (and for any F ′ ∈M(k)
this is the case for h∗(F ′) with h general in Aut(P3)), then E fits in an exact
sequence (1) with L = OX(k). The aim is to find conditions on X which assure
that E is indecomposable. In many cases E cannot be indecomposable, e.g.
by [8, Propositions 2 and 3] E is decomposable if either X is hyperelliptic or
if it has general moduli. As a corollary we will get that E is indecomposable
if X ∩ Z = ∅ and X is the complete intersection of 2 surfaces, one of degree
a ≥ 2 and the other one of degree b ≥ 3k+ a− 3 (Proposition 3.5), but we will
get many more X with this property (Proposition 3.4).
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Lemma 3.3. Fix an integer a > 0 and take an integral degree a surface T ⊂ P3

such that dim(Z ∩ T ) = 0. Then G := F|T is indecomposable and h0(G(k)) =

h0(OT (2k)). If a ≥ 4k + 1 and F ′ ∈ M(k) is associated to some Z ′ with
dimZ ′ ∩ T = 0 and F ′ 6= F , then F ′|T 6= F ′.

Proof. Since the scheme T ∩ Z has dimension 0, the equation of T is not
contained in any prime associated to the primary decomposition of the IZ .
Thus the equation of T is a not zero-divisor of the sheaf IZ (use that IZ has
depth 2, since Z is a (locally) complete intersection and hence the sheaves IZ
and OZ have no embedded components). Thus restricting (5) to T we get an
exact sequence

(6) 0→ OT (k)→ G→ IZ∩T (−k)→ 0.

Since k > 0, G is not semistable and (6) is the Harder-Narasimhan filtration of
E. Thus G ∼= OT (k)⊕ IZ∩T (−k) if G is decomposable. Since G is locally free
and Z∩T is a non-empty codimension 2 subscheme of T , we get a contradiction.
Since Z ∩ T 6= ∅, (6) implies h0(G(k)) = h0(OT (2k)).

Now we take F ′ 6= F and prove that F ′|T 6= G. As in the proof of Proposition

3.1 using the Harder-Narasimhan filtration of F , F ′, G and G′ we see that it is
sufficient to prove that h1(F ⊗F ′(−a)) = 0. By duality it is sufficient to prove
h2(F ⊗F ′(a− 4)) = 0. By (5) it is sufficient to prove that h2(F ′(k+ a− 4)) =
h2(IZ ⊗ F ′(−k + a − 4)) = 0. The sheaf IZ has the minimal free resolution
(4) with P3 instead of P2. By (5) for F ′ we have h2(F ′(k + a − 4)) = 0 if
h2(IZ(a− 4)) = 0 and this is true by (4) if h3(OP3(−2k+ a− 4)) = 0, i.e., a ≥
2k+1. Tensoring (4) with F ′(−k+a−2) we see that h2(IZ⊗F ′(−k+a−4)) = 0
if h3(F ′(−3k + a − 4)) = 0 and h2(F ′(−k + a − 4)) = 0. We saw that to get
the latter vanishing it is sufficient to assume a ≥ 4k + 1. Since Z is a curve,
the exact sequence

0→ IZ(x)→ OP3(x)→ OZ(x)→ 0

shows that h3(IZ(x)) = h3(OP3(x)) for all x ∈ Z. Thus (5) gives h3(F ′(−3k +
a− 4)) = 0 for all a ≥ 3k + 1. �

Proposition 3.4. Fix an integer d > 0 and take an integral degree d surface
T ⊂ P3 such that dim(Z ∩ T ) = 0 and T has only finitely many singular
points. Set G := F|T . Let X ⊂ T be a smooth curve such that X ∩ Sing(T ) =

X ∩Z = ∅ and set E := F|X . If h1(G(−X)) = 0, then E is an indecomposable
limit of trivial bundles. Take another F ′ ∈ M(k) associated to some Z ′ with
dimZ ′ ∩ T = 0 and set G′ := F ′|T and E′ := F ′|X . If d ≥ 4k + 1, F ′ 6= F and

h1(G⊗G′(−X)) = 0, then E′ 6= E.

Proof. Since X ∩ Sing(T ) = ∅, OT (−X) is a line bundle. Since X ∩ Z = ∅,
E fits in an exact sequence (1) with L = OX(k). By [8, Lemma 2] to prove
that E is indecomposable, it is sufficient to prove that h0(E(k)) = h0(OX(2k)).
By Lemma 3.3 it is sufficient to use the assumption h1(F (k)(−X)) = 0 and
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a standard exact sequence of sheaves on T . Now we check the last assertion.
Since d ≥ 4k + 1, Lemma 3.3 gives F ′|T 6= F|T . We conclude as in the proof of

Lemma 3.3. �

Proposition 3.5. Fix F ∈ M(k), k ≥ 2, fitting in (5) and let X ⊂ P3 be a
complete intersection of a surface of degree b and a surface of degree a with
b ≥ 3k + a − 3. Then E := F|X is an indecomposable limit of trivial bundles.
If F ′ ∈M(k) with associated Z ′ such that Z ′ ∩X = ∅, F ′ 6= F and a ≥ 4k+ 1,
then F ′|X 6= E.

Proof. We only need to prove that E is indecomposable. By [8, Lemma 2], it
is sufficient to prove that h0(E(k)) = h0(OX(2k)). Take a degree a surface
T ⊂ P3 containing X. Set G := F|T . Since X ∈ |OT (b)|, X is an ample Cartier
divisor of X. Since X ∩ Z = ∅, T contains no irreducible component of Z ∩ T .
Thus we may apply Lemma 3.3 to T and G. By Lemma 3.3 G is indecomposable
and h0(G(k)) = h0(OX(2k)). Since h1(OX(2k − b)) = 0, the restriction map
H0(OT (2k)) → H0(OX(2k)) is surjective. Thus it is sufficient to prove that
the restriction map H0(G(k)) → H0(E(k)) is surjective. Hence it is sufficient
to prove that h1(G(k− b)) = 0. Look at (5). Since Z is a complete intersection
of 2 surfaces of degree k ([7, Lemma 4]), Z has the following minimal free
resolution:

(7) 0→ OP3(−2k)→ OP3(−k)⊕2 → IZ → 0.

Since T contains no irreducible component of Z, we have Tor1(IZ ,OT ) = 0.
Thus restricting (7) to T we get the exact sequence

(8) 0→ OT (−2k)→ OT (−k)⊕2 → IZ∩T,T → 0.

From (8) we get h1(T, IZ∩T,T (x)) ≤ h2(OT (x − 2k)) for all x ∈ N. Since
ωX ∼= OT (a−4), duality gives h2(OT (x−2k)) = h0(OT (2k+a−4−x)). Thus
h1(T, IZ∩T,T (x)) = 0 for all x ≥ 2k + a− 3. From (6) we get h1(G(y)) = 0 for
all y ≥ 3k + a− 3.

Now we fix F ′ and prove that F ′|X 6= F|X under the stated assumptions on a

and b. Set G′ := F ′|T . Since a ≥ 4k+ 1, Lemma 3.3 gives G′ 6= G. We see that

it is sufficient to prove that h1(G⊗G′(−b)) = 0. Since ωT ∼= OT (a−4), duality
gives h1(G⊗G′(−b)) = h1(G⊗G′(b+ a− 4)). Tensoring with the locally free
sheaf G′(b + a − 4) the restriction of (5) to T we see that it is sufficient to
prove that h1(G′(k + b + a − 4)) = h1(IZ∩T ⊗ G′(−k + b + a − 4)) = 0. The
restriction to T of the exact sequence (4) for P3 instead of P2 is exact, because
dimZ∩T = 0. Thus from (5) restricted to T we see that h1(G′(k+b+a−4)) = 0
(since k + b+ a− 4 > 2k − 4 and −k + b+ a− 4 ≥ 2k − 1). �

3.3. Pull-backs

Now we use pull-backs of bundles from Pm, m = 2, 3, by a finite covering
f : W → Pm and then restrict the bundle to many smooth curves X ⊂W (most
of these curves will not be finite covering of a curve in Pm (case m = 2 or for
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m = 3 at least f|X will be an embedding)). Thus we get existence not covered
by other examples plus the quotation of [8, Remark 3]. We only give the details
for the case m = 2. Let W be a smooth and connected projective surface and
M an ample and spanned vector bundle on W . Take a 3-dimensional linear
subspace V ⊆ H0(M) spanning M (e.g. take as V a general 3-dimensional
linear subspace of H0(M)). By the universal property of projective spaces the
pair (L, V ) induces a morphism uM,V : W → P2 such that M = u∗M,V (OP2(1))

and V = u∗M,V (H0(OP2(1))). Set u := uM,V . Fix an indecomposable rank

2 vector bundle F on P2, which is a limit of trivial vector bundles and it is
indecomposable ([7, 24, 25]) and set G := u∗(F ). Let k be the unique positive
integer such that F fits in an exact sequence Since M is ample, u has finite
fibers. Thus u is surjective and u : W → P2 is a finite covering. Set e := deg(u).
From (3) we get an exact sequence

(9) 0→M⊗k → G→ IZ′ ⊗ (M∨)⊗k → 0

with Z ′ a degree ek2 zero-dimensional scheme on W . Since M is ample, (9)
shows that G is unstable with respect to the polarization M and hence that
(9) is the Harder-Narasimhan filtration of G. In particular the inclusion in (9)
gives the only rank 1 subsheaf of G with positive degree with respect to the
polarization M .

Claim 1. G is indecomposable and it is a flat limit of a family of trivial bundles
on W .

Proof Claim 1. The pull-back by u of the flat family of trivial bundles on P2

with F as its limit shows that G is a flat limit of a family of trivial vector
bundles on W . Assume that G is decomposable. Since det(G) ∼= OW , G ∼=
R ⊕ R∨ for some line bundle R on W . By (9) and the M -unstability of G
we get M⊗k ∈ {R,R∨}. Thus c2(G) = ek2 6= 0. Since c2(F ) = 0, we get a
contradiction. �

Fix a very ample line bundle R on W such that h1(G ⊗ L⊗k ⊗ R∨) =
h1(L⊗2k ⊗R∨) = 0 and take any smooth X ∈ |R| such that Z ′ ∩X = ∅. Set

E := G|X and M := L⊗k|X . Since Z ′ ∩X = ∅, (9) gives an exact sequence (1).

Claim 2. E is indecomposable and it is a flat limit of a family of trivial bundles
on X.

Proof Claim 2. By Claim 1, E is a flat limit of trivial bundles on X. Assume
that E is decomposable. Since L is ample, (1) implies E ∼= L ⊕ L∨. By
[8, Lemma 2] to get a contradiction it is sufficient to prove that h0(E ⊗ L) =
h0(L⊗2). Use that h1(G ⊗ L⊗k(−X)) = h1(L⊗2k(−X)) = 0 and that h0(G ⊗
L⊗k) = h0(L⊗2k). �

Claim 3. Take F ′ ∈ N(k) such that F ′ 6= F and set G′ := f∗(F ′). We have
G′ 6= G.
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Proof Claim 3. Any isomorphism G → G′ sends the Harder-Narasimhan fil-
tration of G onto the Harder-Narasimhan filtration of G′. Thus (since G and
G′ are isomorphic to their duals) it is sufficient to prove that h0(G ⊗ G) =
h0(G⊗M⊗k). This is true, because Z 6= ∅. �

Remark 3.6. By [7] the set of all rank 2 vector bundles on Pm, m = 2, 3, which
are limits of trivial bundles is not contained in a union of finitely many algebraic
varieties (it is the union of countably many irreducible algebraic varieties Vk,
k ≥ 1, with limk→+∞ dimVk = +∞). For every projective m-fold, m = 2, 3,
there is a finite morphism f : W → Pm. By Claim 3 the set of all rank 2
vector bundles on W which are limits of the trivial rank 2 vector bundle (on
W ) is not contained in finitely many algebraic varieties (it contains the union
of countably many algebraic varieties Vk, k ≥ 1, with limk→+∞ dimVk = +∞).

4. Higher rank vector bundles

In this section we discuss the existence of indecomposable rank r > 2 which
are limits of trivial bundles. We only look at vector bundles Sr−1(F ) with F
indecomposable and limit of trivial bundles, where Sr−1 denote the (r − 1)-th
symmetric product. If the bundle F is on a smooth curve X and it fits in an
exact sequence (1), then E : Sr−1(F ) has a filtration {Ei}0≤i≤r with E0 = 0,

Er = E, Ei a rank i subbundle of E, E1
∼= L⊗(r−1) and Ei/Ei−1 ∼= L⊗r+1−2i

for 2 ≤ i ≤ r − 1 (use the filtration of Sr−1(F (L)) induced by the twist of (1)
and that Sr−1(F (L)) ∼= E⊗L⊗(r−1)). This is the Harder-Narasimhan filtration
of E. On Pm, m = 2, 3, we have a similar filtration over the complement of Zred

with L := OPm(k) and hence in this case E is unstable with Harder-Narasimhan
filtration of maximal length, i.e., with subquotients of rank 1.

Proposition 4.1. E is indecomposable.

Proof. Call ε ∈ H1(L⊗2) the extension class of (1). Each bundle Ei/Ei−2, 2 ≤
i ≤ r, is an extension of L⊗j , j = 2r−1−2i, by L⊗j+2 and this extension class is
induced by ε and hence it is non-zero. Thus each Ei/Ei−2 is indecomposable.
Suppose that E is decomposable, say E = D1 ⊕ · · · ⊕ Dt with t ≥ 2 and
each Di indecomposable. Since the Harder-Narasimhan filtration of E has
rank 1 subquotients, each of them isomorphic to some power of L, the same
is true for each Di. By induction on r we may also assume that Sr−2(F ) is
indecomposable. Twisting by suitable line bundles we get that Er−1 and E/E1

are indecomposable. Since Er−1 (resp. E/E1) is indecomposable, its Harder-
Narasimhan filtration and the one of E, plus the decomposability of E give
E ∼= Er−1⊕E/Er−1 (resp. E ∼= E1⊕E/E1). Since E1 and E/E1 are different
powers of L and r ≥ 3, we get a contradiction. �

Now we consider P2.

Remark 4.2. Take F ∈ N(k), an integer r ≥ 3 and a large degree plane curve
X ⊂ P2. Since F|Y is indecomposable (Proposition 3.4), Proposition 4.1 shows
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that Sr−1(F ) is indecomposable. Thus we get infinitely many indecomposable
limits of trivial bundles for any rank r ≥ 3. Using M(k) and Proposition 3.5
we get the same for P3.

Fix an integer k > 0 and take E1, . . . , Es ∈ N(k), s ≥ 2, with Ei sitting
in an exact sequence (3) with (E,Z) = (Ei, Zi). Assume Zi ∩ Zj = ∅ for all
i 6= j. Set E := E1⊗ · · ·⊗Es. E has rank 2s and it is a limit of trivial bundles
on P2. Each Ei satisfies Ei ∼= E∨i . Thus E ∼= E∨. Let E = D1 ⊕ · · · ⊕ Dt,
t ≥ 1, be a decomposition of E into indecomposable factors. The uniqueness,
up to isomorphisms, of the indecomposable factors of any vector bundles on
any projective variety ([4]) shows that any isomorphism between E and E∨

induces a permutation σ : {1, . . . , t} → {1, . . . , t} such that Dσ(i)
∼= Di for all

i ∈ {1, . . . , t}.

Question 4.3. Is E1 ⊗ · · · ⊗ Es indecomposable?

We can prove this question when s = 2.

Proposition 4.4. E1 ⊗ E2 is indecomposable.

Proof. The Harder-Narasimhan filtration of E := E1 ⊗ E2 has the first rank
1 subsheaf with slope 2k, one rank 1 subquotient with slope −2k while the
other subquotients (with total rank 2) have slope 0. Assume E decomposable.
Tensoring (3) for E1 (so with Z = Z1) with E2 we get an exact sequence

(10) 0→ E2(k)→ E → IZ1 ⊗ E2(−k)→ 0.

Since Z1 6= ∅ and Z2 6= ∅, from (10) and (3) for (E,Z) = (E2, Z2) we get

h0(E) = h0(OP2(2k)) =
(
2k+2

2

)
.

(a) Assume that E has a factor OP2(2k) (resp. OP2(−2k)). In this case E
has a factor OP2(−2k) (resp. OP2(2k)) because E ∼= E∨. Call D the direct
sum of the other factors of E. Since µ(D) = 0, we get that there is no non-zero
map E → IZ1∪Z2(−2k), a contradiction.

(b) Assume that OP2 is a factor of E. There is no non-zero map OP2 →
IZ1
⊗E2(−k) by (3) for (E2, Z2), because Z1 6= ∅. Thus (10) gives an injective

map j : OP2 → E2(k) with locally free quotient, contradicting the fact that
E2(k) is indecomposable.

(c) By steps (a) and (b) we have E ∼= D1 ⊕D2 with D1 and D2 indecom-
posable and of rank 2. First assume that D1

∼= D∨1 . In this case we get an
exact sequence

(11) 0→ OP2(2k)→ D1 → IZ1∪Z2(−2k)→ 0.

Since h0(D1) = h0(E) by (11) and Claim 1, we get h0(D2) = 0. Since c1(D2) =
0, we get that D2 is stable. Thus there is no non-zero map D2 → E2(−k). By
(10) we get D2

∼= E2(k), contradicting the stability of D2. �

Remark 4.5. Restricting to a general plane we get that if E1 and E2 are ele-
ments of M(k) with disjoint Z’s, then E1 ⊗ E2 is indecomposable.
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5. Curves with a prescribed gonality or low genus

For all integers k ≥ 2 and g ≥ 2k− 2 letM1
g,k denote the set of all smooth

curves of genus g with gonality k. If g ∈ {2k− 2, 2k− 1}, thenM1
g,k is a non-

empty open subset of the moduli spaceMg of all genus g smooth curves, while
if 2k + 1 < g, then M1

g,k is an irreducible locally closed subset of Mg with
dimension 2g− 2 + 2k and a general X ∈M1

g,k has a unique g1k ([2, Theorem
2.6]).

Remark 5.1. Let X be a genus g curve having an indecomposable rank 2 vector
bundle E which is a limit of trivial bundles. By [8, Remark 1] there is a line
bundle L on X such that h1(L⊗2) > 0 and h0(L) ≥ 2. Since deg(L) ≤ g − 1,
we get g ≥ 3. Since X is not hyperelliptic ([8, Proposition 3]) we get g ≥ 4.

See Proposition 5.2 for a classification of all (X,E) with E ∈ Σ′(X, 2) when
g = 4. In this case it is easy to check that Σ′(X, 2) = Σ′′(X, 2).

Proposition 5.2. Let X be a smooth curve of genus 4. X has an indecom-
posable vector bundle E which is a limit of trivial bundles if and only if it has
a unique g13 and in this case E is unique and fits in (1) with L the unique g13
of X.

Proof. Since X is not hyperelliptic ([8, Proposition 3]) and it has genus 4, it is
trigonal. Since deg(ωX) = 6, E lies in (1) with L a g13 on X. Since h1(L⊗2) > 0
and deg(ωX) = 6, we have L⊗2 ∼= ωX . Let φ : X → P3 the canonical map.
Since X is not hyperelliptic, φ is an embedding and φ(X) is the complete
intersection of a quadric surface Q and a cubic surface. We have L⊗2 ∼= ωX if
and only if Q is a quadric cone (in the other case it has two g13 , say L1, L2 with
L1 ⊗L2

∼= ωX and hence L⊗2i 6= ωX for all i) ([17, Ex. IV.5.3]). The existence
of canonical models lying on a quadric cone is obvious (take the intersection
of a quadric cone and a general cubic surface or use [17, Ex. V.2.9]). If one is
interested in singular curves, too, one can look at [9, 13,18,23].

The existence part is a particular case of [8, Proposition 5], because X has
a unique g13 if and only if its canonical model lies on a quadric cone and in this
case the g13 is a theta-characteristic of X. Of course, this part of the study of
theta-characteristic on low genus curves is well described in [15,26,27]. �

Remark 5.3. Fix a general X ∈ M1
g,k, g > 2k ≥ 6. There is a unique R ∈

Pick(X) such that h0(R) = 2 ([2]) and the first integer t such that h0(R⊗t) >
t + 1 (call it ρR), it the first integer t such that t + 2 ≤ kt + 1 − g, i.e.,
ρR = d(g + 1)/(k − 1)e ([6], [11, 1.1.3], [10, 1.1]).

Adapting [8, Proposition 3] we get the next propositions.

Proposition 5.4. Fix X ∈M1
g,k and take R ∈ Pick(X) such that h0(R) = 2.

Let ρR be the maximal positive integer t such that h0(R⊗t) = t + 1. Fix an
integer t such that 1 ≤ t ≤ ρR/2 and take any rank 2 vector bundle E on X
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which is a limit of trivial bundles and which fits in (1) with L = R⊗t(D) with
D an effective divisor with h0(R⊗2t(D)) = 2t+ 1. Then E splits.

Proof. Twisting with R⊗t the family of trivial bundles with E as a limit, we get
h0(E ⊗ R⊗t) ≥ 2t + 2. Twisting (1) with R⊗t and using that h0(R⊗2t(D)) =
2t+ 1 we first get D = 0 and then that the extension class in (1) splits. Thus
E is decomposable. �

Proposition 5.5. Fix X ∈Mg and a rank 2 bundle on X which is a limit of
trivial bundles on nearby curves. Write L = M(B) with B an effective divisor
and h0(L) = h0(M). If h0(M⊗2(B)) < 2h0(M), then E is decomposable.

Corollary 5.6. Take a general X ∈ M1
g,4, g ≥ 7. Let E be a rank 2 vector

bundle limit of trivial bundles on nearby curves and fitting in (1) for some

L ∈ Picd(X). X is decomposable if 2d < b(g + 8)/2c.

Proof. Let R ∈ Pic4(X) be the only line bundle with h0(R) = 2 (it is unique by
the generality of X). Write L = M(B) with D effective and h0(M) = h0(L).
By [11, Theorem 2.3.2] and the assumption d < b(g + 8)/2c, the morphism
induced by |M | is not birational onto its image. Since X is a general 4-gonal
curve, it is not a multiple covering of a curve of genus > 0. Thus it is easy
to check that M ∼= R⊗t for some positive integer t (or see [11, Claim 1.1.6]).
We have h0(R⊗2t) = 2t + 1 by Remark 5.3, because 2d + 1 − g ≤ 2t + 1.
Assume h0(R⊗2t(D)) ≥ 2t+ 2 and take D′ ⊆ D minimal with h0(R⊗2t(D′)) =
2t + 2. Note that R⊗2t(D′) is spanned and not composed with |R|, because
h0(OX(D) ⊗ R∨) = 0. Thus |R⊗2t(D′)| is simple (i.e., induces a morphism
birational onto its image), contradicting the inequality 2d < b(g + 8)/2c. �

Corollary 5.7. Fix an integer g ≥ 9 and a general X ∈ M1
g,5. Let E be a

rank 2 vector bundle limit of trivial bundles on nearby curves and fitting in (1)

for some L ∈ Picd(X). X is decomposable if 2d < b(g + 8)/2c.

Proof. Let R ∈ Pic5(X) be the only line bundle with h0(R) = 2. Write L =
M(B) with D effective and h0(M) = h0(L). By [11, Proposition 2.3.7] and the
assumption d < b(g + 8)/2c, the morphism induced by |M | is not birational
onto its image. Since 5 is a prime number, this implies the existence of an
integer t > 0 such that M ∼= R⊗t. By Proposition 5.4 it is sufficient to prove
that h0(R⊗2t(D)) = 2t + 1. We have h0(R⊗2t) = 2t + 1 by Remark 5.3,
because 2d + 1− g ≤ 2t + 1. Assume h0(R⊗2t(D)) ≥ 2t + 2 and take D′ ⊆ D
minimal with h0(R⊗2t(D′)) = 2t + 2. Note that R⊗2t(D′) is spanned and
not composed with |R|, because h0(OX(D) ⊗ R∨) = 0. Thus |R⊗2t(D′)| is
simple (i.e., induces a morphism birational onto its image), contradicting the
inequality 2d < b(g + 8)/2c. �

Remark 5.8. Let X be a trigonal curve of genus g ≥ 5. There is a unique
R ∈ Pic3(X) such that h0(R) = 2. Let m = m(X) the Maroni invariant of X,
i.e., let m+ 2 be the first positive integer t such that h0(R⊗t) > t+ 1 ([22, §1]).
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We have d(g − 4)/3e ≤ m ≤ b(g − 2)/2c. In the set-up of Proposition 5.4 we
have ρR = m+ 1.

Proposition 5.9. Let X be a smooth curve of genus g with an indecomposable
rank 2 vector bundle limit of trivial bundles and with δ(E) = 3. Then g = 4
and X, L and E are as in Proposition 5.2.

Proof. By Proposition 5.2 it is sufficient to prove that g = 4. By Remark 5.1
we have g ≥ 4. Assume g ≥ 5. Take L ∈ Pic3(X) such that E fits in (1)
with deg(L) = 3 and h0(L) ≥ 2. Since X is not hyperelliptic ([8, Proposition
3]), it is trigonal, h0(L) = 2 and L has no base points. Let m be the Maroni
invariant of X (Remark 5.8). Since m ≥ d(g−4)/3e ≥ 1, we have h0(L⊗2) = 3.
Proposition 5.4 with t = 1, D = 0 and R = L gives a contradiction. Thus
g = 4 and X, L and E are described in Proposition 5.2. �

Proposition 5.10. Take X ∈ M1
g,k, k ≥ 3, g ≥ k2 − 2k + 2. If k is not a

prime assume that X is not a multiple covering of a curve of positive genus.
Then δ(E) > k for all E ∈ Σ′′(X, 2).

Proof. Assume the existence of E ∈ Σ′′(X, 2) such that δ(E) ≤ k. We have

δ(E) = k by Remark 1.1 and there is L ∈ Pick(X) such that |L| is a g1k on X and
E is an extension of L∨ by L. By Proposition 5.4 we have h0(L⊗2) ≥ 4. Since
L is spanned, L⊗2 is spanned. Thus |L⊗2| induces a morphism φ : X → P3

such that deg(φ) · deg(φ(X)) = 2k. Since any integral and non-degenerate
space curve has arithmetic genus at most k2 − 2k + 1 and g ≥ k2 − 2k + 2,
deg(φ) > 0. Since X is not a multiple covering of a smooth curve of positive
genus, the normalization of φ(X) is P1. Since φ(X) is non-degenerate, we have
deg(φ(X)) ≥ 3. Thus X has gonality ≤ 2k/3, a contradiction. �

Proposition 5.11. Let X be a trigonal curve with genus g and Maroni invari-
ant m. If E ∈ Σ′′(X, 2), then 2δ(E) ≥ g + 2.

Proof. Set δ := δ(E). Assume 2δ ≤ g + 1. Take L ∈ Picδ(X) such that
h0(L) ≥ 2 and E fits in (1). Since g ≥ 5, there is a unique R ∈ Pic3(X)
such that h0(R) = 2. By [22, definition of V rn at page 173 and Proposition 1]
there is an integer k > 0 and an effective divisor B such that L = R⊗k(B) and
h0(L) = h0(R⊗k). By Proposition 5.4 to get a contradiction it is sufficient to
prove that h0(R⊗2k(B)) = 2k + 1. Set b := deg(B) ≥ 0. We have δ = 3k + b.
Since k > 0, we have 6k + 3b = 2δ + b ≤ 3δ − 3 = 3(δ − 1). Since |R|
covers X, we have h0(R⊗2k(B)) ≤ h0(R⊗(δ−1)). Since 2k ≤ m + 1 we have
h0(R⊗2k) = 2k + 1. Assume h0(R⊗2k(B)) > k + 1. Since 2(6k + b) ≤ g + 1,
R⊗2k(B) is of type I ([22, definition of V rn at page 173 and Proposition 1]),
i.e., R⊗2k(B) ∼= R⊗x(B′) with B′ ≥ 0 and B′ the base locus of |R⊗2k(B)|.
Since h0(R⊗2k) = 2k + 1, we get x > 2k + 1, i.e., h0(OX(G)⊗R∨) > 0. Thus
h0(L) ≥ h0(R⊗(2k+1)) ≥ 2k + 2, a contradiction. �
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6. Proofs of Theorems 1.2 and 1.3

Remark 6.1. Assume the existence of E ∈ Σ′′(X, 2) fitting in (1) and call
ε ∈ H1(L⊗2) the associated extension class. For each λ ∈ K let Eλ be the
extension of L∨ by L associated λε. We have E0

∼= L⊕L∨ and Eλ ∼= E for all
λ 6= 0. Thus L ⊕ L∨ is a flat limit of a family of elements of Σ′′(X, 2). Thus
Theorem 1.2 may be rephrased as a criterion for the existence of an element of
Σ′′(X, 2) fitting in (1).

Proof of Theorem 1.2. The “only if ” part is true by [8, Remark 1] and Remarks
1.1 and 6.1.

Now assume h0(L) ≥ 2. By the proof of [8, Proposition 1] it is sufficient
to prove that L is a limit of spanned line bundles on nearby curves, i.e., it
is sufficient to find an integral quasi-projective variety T , o ∈ T , a smooth
morphism f : W → T with as fibers smooth curves of genus g, an isomorphism
φ : X → f−1(o) and a line bundle L on W such that L|f−1(t) is globally
generated for each t ∈ T \ {o} and φ∗(L|f−1(o)) ∼= L. Set d := deg(L). If either
d ≥ g + 1, or L is globally generated, then L⊕ L∨ ∈ Σ′(X, 2) ([8, Proposition
1]). Now assume that L is not globally generated, say L ∼= M(B) with B > 0
and h0(L) = h0(M). Write b := deg(B). L is a limit of spanned line bundles
on nearby curves by the theory of admissible covering due to D. Mumford
and J. Harris ([16]) or any other compactification and/or generalization of the
Hurwitz scheme described in [14], e.g. the theory of stable maps with P1 as
target. In the set-up of [16] it is almost exactly [16, Theorem 5], except that in
that theorem g = 2d− 1; the proof given in [16] works for any g with minimal
modifications, as clear by the pictures (see [16, Fig. at page 68]; all the theory
of admissible coverings was generalized and put on stronger and more general
foundations in the study of other compactifications of the Hurwitz scheme and
in the study of stable maps. One can also use the theory of limit linear series
due to D. Eisenbud and J. Harris ([12]) or adapt [10, Proposition A.3]. �

Remark 6.2. Theorem 1.2 shows that L⊕OX ⊕L∨ is a limit of trivial bundles
on nearby curves if L is a line bundle with h0(L) ≥ 2.

Lemma 6.3. Let Y be an integral projective curve and u : X → Y its normal-
ization. Fix a line bundle L on Y such that deg(L) > 0. Assume the existence
of an algebraic family V of dimension t ≥ κ of pairwise non-isomorphic vector
bundles on Y limit of trivial bundles and fitting in (1). Then there is an alge-
braic family G of dimension t ≥ κ of pairwise non-isomorphic vector bundles
on X limit of trivial bundles and fitting in (1) with u∗(L) instead of L and
hence with δ(E) = deg(L) for all E ∈ G. If t = κ, we claim that G 6= ∅.

Proof. Set M := u∗(L). By Lemma 2.7 V corresponds to an algebraic subset
V ⊂ H1(Y,L⊗2) \ {0} such that no 2 of them are collinear. Hence the union
V ′ ⊆ H1(Y, L⊗2) of the lines though 0 meeting V has dimension t + 1. Since
h0(OY ) = h0(OX) = 1, and u∗(M

⊗2) ∼= L⊗2 ⊗ u∗(OX), the natural map
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H1(Y,L⊗2)→ H1(M⊗2) has kernel of dimension at most κ. Apply Lemma 2.7
to X and M . �

Remark 6.4. Proposition 3.1, Remark 3.2 and Lemma 6.3 give that Σ′(X, 2) 6= ∅
and that Σ′(X, 2) is large for all curves X with a singular plane model such
that the integer pa(Y )−pa(X) is small with respect to the integer deg(Y ). Our
proof does not show if stronger statements are true when we impose more on
the singularities of Y .

Proof of Theorem 1.3. Fix a positive integer x. To prove the theorem it is
sufficient to find g0 ∈ N such that γ′(g) ≥ x for all g ≥ g0. Set g0 := 16x. Fix an
integer g ≥ g0. Let d be the minimal positive integer such that (d−1)(d−2)/2 ≥
g. Set k := b(d − 1)/4c. We have 4k + 4 ≥ d ≥ 4k + 1 and k > 0. Set
κ := (d − 1)(d − 2)/2 − g. The minimality of d gives 0 ≤ κ ≤ d − 3. Let
Y ⊂ P2 be an integral plane curve of degree d with geometric genus g (e.g.
with κ nodes as its only singularities). By Proposition 3.1 and Remark 3.2
there is an algebraic family V, dimV = 3k2 − 1, of pairwise non-isomorphic
indecomposable rank 2 vector bundles, which are limits of trivial bundles on Y
and that fits in (1) with L = OY (k). Let u : X → Y be the normalization. By
Lemma 6.3 X has a family of dimension 3k2−1−κ of pairwise non-isomorphic
indecomposable rank 2 vector bundles which are limits of trivial bundles. Since
κ ≤ d− 3 ≤ 4k+ 1, it is sufficient to check that 3k2 − 4k− 2 ≥ x. This is true,
because (d− 1)(d− 2)/2 ≥ g ≥ g0 and d ≤ 4k + 4. �

7. Limits of non-trivial bundles

In this section we take limits of rank 2 decomposable vector bundles on a
smooth curve C of genus g ≥ 1. Up to a twist by a line bundle it is sufficient
to describe all Σ(OC ⊕M) with M a fixed line bundle on C.

Remark 7.1. Let A,B,L line bundles on C such that A 6= B. There is a
surjection A ⊕ B → L if and only if either L ∼= A or L ∼= B or there are
effective divisors D,D′ on C such that D ∩D′ = ∅ and L ∼= A(D) ∼= B(D′).

Lemma 7.2. Let F be a rank 2 vector bundle on C. Take E ∈ Σ(F ).

(1) s(E) ≤ s(F );
(2) If s(E) = s(F ) and F is decomposable, then E ∼= F .

Proof. (1) follows from the semicontinuity of the Segre invariant.
(2) Now assume s(E) = s(F ) and F decomposable. Up to a twist we may

assume F ∼= OC ⊕ M with deg(M) ≤ 0. Note that s(F ) = −deg(E). By
the semicontinuity theorem for cohomology we get h0(E ⊗M∨) > 0. Since
h0(E ⊗M∨) > 0 and s(M) = −deg(M), E fits in an exact sequence

(12) 0→M → E → OC → 0.

If M ∼= OC , then we also have h0(E) ≥ 2 and as observed in [8, Remark 1]
together with the condition s(E) = 0 we get E ∼= O⊕2C . Now assume M 6= OC .
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Since deg(M) ≤ 0, (12) gives h0(E) ≤ 1. The semicontinuity theorem for
cohomology gives h0(E) > 0. Thus a non-zero element of H0(E) induces a
non-zero element of OC and hence a splitting of (12). �

Remark 7.3. Every E ∈ Σ(OX ⊕M) is not semistable and s(E) ≤ s(F ) =
−deg(M). By Lemma 7.2 if deg(M) ≤ 3 − 2g, then every E ∈ Σ(OC ⊕M)
is decomposable. The decomposable E ∈ Σ(OC ⊗M) are exactly the bundle
OC ⊕ M and the bundles L ⊕ L∨ ⊗ M with deg(L) > 0, L ∼= OC(D) ∼=
M(D′) with D,D′ effective divisors on C with disjoint support. In particular
if deg(L) ≥ 2g+max{0,deg(M)}, then L⊕L∨⊗M ∈ Σ(OC ⊕M). For certain
M we obviously may get many other L such that L⊕L∨⊗M ∈ Σ(OC⊕M). For
instance, if M ∼= OC(p− q) with p, q ∈ C and p 6= q we may take L = OC(p).

Corollary 7.4. Assume g ≤ 1 and take any decomposable rank 2 vector bundle
F on C. Then every element of Σ(F ) is decomposable.

Proof. Fix E ∈ Σ(F ). Since F is decomposable, it is unstable, i.e., s(F ) ≤ 0.
By Lemma 7.2 either E ∼= F or s(E) < 0. If s(E) < 0, then E is decomposable
by Atiyah’s classification of vector bundles on an elliptic curve ([4]). �

Proposition 7.5. Fix a smooth curve C of genus g. For any integer x and
any general M ∈ Picx(C) every E ∈ Σ(OC ⊕M) is decomposable.

Proof. For any integer k > 0 let C(k) denote the k-symmetric power of C and
let jC,k : C(k) → Picx(C) denote the natural map D 7→ OC(D).

Up to a twist by the line bundle M∨ it is sufficient to do the case x ≤ 0.
Fix an integer x ≤ 0 and any M ∈ Picx(C). Assume the existence of an

indecomposable E ∈ Σ(OC⊕M) and let L be a maximal degree rank 1 subsheaf
of E. We have deg(L) ≥ deg(OC) = 0. We have s(E) = deg(E) − 2 deg(L) =
−k + 2 deg(L) and E/L is a line bundle of degree −k − deg(L) isomorphic to
M ⊗ L∨. Since E is indecomposable and an extension of E/L by L, we have
h1(L⊗2⊗M∨) > 0. Thus 2 deg(L)−x ≤ 2g−2. Thus to prove the proposition
we only need to check finitely many x, say x ≥ 2g − 2.

Take any G ∈ Σ(OC ⊕ M) with G 6= OC ⊕ M and let L be a maximal
degree line subbundle of E. Set y := deg(L). Lemma 7.2 gives y > 0. Since L
has maximal degree among the rank 1 subsheaves of E, E/L has no torsion.
Since det(E) ∼= M , we have E/L ∼= M ⊗ L∨. As in Remark 6.1 we see that
L ⊕ L∨ ⊗M ∈ Σ(OC ⊕M). Hence there is a surjection OC ⊕M → L, i.e.,
there are effective divisors D,D′ on C such that deg(D) = y, deg(D′) = y− x,
L ∼= OC(D) ∼= M(D′) and D, D′ have disjoint support (Remark 7.1). Since
M ∼= OC(D −D′), M is uniquely determined by the pair (D,D′). Since E is
indecomposable, we have h1(L⊗2⊗M∨) > 0. We have L⊗2⊗M∨ ∼= OC(D+D′).
Since dim |ωC | = g − 1, the effective divisor D +D′ depends on at most g − 1
parameters. Since C is a smooth curve, for any effective divisor A ⊂ C there
are only finitely many pairs (D,D′) such that D + D′ = A. The line bundle
M is uniquely determined by the pair (D,D′). Thus the possible M of degree
x depends on at most g − 1 parameters. �



60 E. BALLICO

8. Limits with constant cohomology and/or good global sections

Remark 8.1. Fix L ∈ Pic(X) such that deg(L) > 0. By Theorem 1.2 L⊕L∨ ∈
Σ′′(X, 2) with constant cohomology if and only if h0(L) = 2.

Remark 8.2. Fix L ∈ Pic(X) such that deg(L) > 0. By Theorem 1.2 E := L⊕
L∨ ∈ Σ′′(X, 2) with E/ev(E) locally free if and only if L is globally generated.
Take F ∈ Σ′′(X, 2) fitting in (1). The sheaf F/ev(F ) is locally free, if and only
if L is globally generated.

Proposition 8.3. Fix an integer g ≥ 5. Let X be a trigonal curve of genus g.
Let m be the Maroni invariant of X. There is no indecomposable E ∈ Σ′′(X, 2)
such that E/ev(E) is locally free and with δ(E) ≤ min{(3m+ 3)/2, g− 1−m}.

Proof. Fix an indecomposable E ∈ Σ′′(X, 2) such that E/ev(E) is locally free
and set d := δ(E), i.e., assume that E fits in (1) with deg(L) = d. By as-
sumption L is globally generated (since ev(E) ∼= L(−B), where B is the base
divisor of |L|). Let R ∈ Pic3(X) be the trigonal line bundle (it is unique,
because g ≥ 5). We use Maroni’s theory of linear series on trigonal curves
([22, §1]). Since L has no base locus and d ≤ g − 1 −m, there is an integer
t > 0 such that L ∼= R⊗t ([22, Definition of V rn at p. 173 and Proposition 1]).
We have d ≡ 0 (mod 3) and t = d/3. Since 2t ≤ m+1 by assumption, we have
h0(L⊗2) = 2t+ 1. Apply Proposition 5.4. �

References

[1] E. Arbarello, A. Bruno, G. Farkas, and G. Saccà, Explicit Brill-Noether-Petri general
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