DOI QR코드

DOI QR Code

Vaginal Microbiota Profiles of Native Korean Women and Associations with High-Risk Pregnancy

  • Chang, Dong-Ho (Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Shin, Jongoh (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology) ;
  • Rhee, Moon-Soo (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Kyung-Ryang (Department of Biological Science and Biotechnology, Hannam University) ;
  • Cho, Byung-Kwan (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology) ;
  • Lee, Sung-Ki (Department of Obstetrics and Gynecology, College of Medicine, Myunggok Medical Research Center, Konyang University) ;
  • Kim, Byoung-Chan (Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2019.08.07
  • Accepted : 2019.11.22
  • Published : 2020.02.28

Abstract

The vaginal microbiota may be important for pregnancy prognosis because vaginal dysbiosis during pregnancy appears to be related to preterm birth (PTB) or pregnancy loss. Previous reports have indicated that a Lactobacillus-poor microbial flora in the vagina and intrauterine infection by diverse anaerobes ascending from the vagina are associated with undesirable delivery outcomes. However, no research has involved the use of pyrosequencing analysis to examine vaginal microbiota profiles or their potential associations with high-risk pregnancy in Korean women. Vaginal swabs were collected from 500 Korean women for the identification of community state types (CSTs). Of these, 137 samples were further analyzed using a Roche/454 GS Junior pyrosequencer. Three distinct CSTs were identified based on the dominant vaginal microbes: CST I (Lactobacillus crispatus dominated), CST III (Lactobacillus iners dominated), and CST IV (with diverse species of anaerobes). Twelve of the 67 pregnant women had undesirable pregnancy outcomes (four miscarriages and eight PTBs). The dominant microbe in the vaginal microbiota of women who gave birth at full-term was L. crispatus. In contrast, L. iners was the dominant vaginal microbe in women who miscarried. Most (n = 6/8) vaginal microbiota profiles of women who experienced PTB could be classified as CST IV, with diverse bacteria, including anaerobic vaginal species. The present study provides valuable information regarding the characteristics of the vaginal microbiota of Korean women related to high-risk pregnancy. Investigation of the vaginal microbiotic structure in pregnant Korean women is necessary to enable better prediction of adverse pregnancy outcomes.

Keywords

References

  1. Dethlefsen L, McFall-Ngai M, Relman DA. 2007. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449: 811-818. https://doi.org/10.1038/nature06245
  2. Seon-Kyun Kim, Robin B Guevarra, You-Tae Kim, Joongi Kwon, Hyeri Kim, Jae Hyoung Cho, et al. 2019. Role of probiotics in human gut microbiome-associated diseases. J. Microbiol. Biotechnol. 29: 1335-1340. https://doi.org/10.4014/jmb.1906.06064
  3. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. 2011. Human nutrition, the gut microbiome and the immune system. Nature 474: 327-336. https://doi.org/10.1038/nature10213
  4. Sungmi Choi, Yu-Jin Hwang, Min-Jeong Shin, Hana Yi. 2017. Difference in the gut microbiome between ovariectomyinduced obesity and diet-induced obesity. J. Microbiol. Biotechnol. 27: 2228-2236. https://doi.org/10.4014/jmb.1710.10001
  5. Onderdonk, AB, Delaney ML, Fichorova RN. 2016. The human microbiome during bacterial vaginosis. Clin. Microbiol. Rev. 29: 223-238. https://doi.org/10.1128/CMR.00075-15
  6. Ollberding NJ, Volgyi E, Macaluso M, Kumar R, Morrow C, Tylavsky FA, et al. 2016. Urinary microbiota associated with preterm birth: results from the conditions affecting neurocognitive development and learning in early childhood (CANDLE) study. PLoS One 11: e0162302. https://doi.org/10.1371/journal.pone.0162302
  7. Zhou X, Bent SJ, Schneider MG, Davis CC, Islam MR, Forney LJ. 2004. Characterization of vaginal microbial communities in adult healthy women using cultivationindependent methods. Microbiology 150: 2565-2573. https://doi.org/10.1099/mic.0.26905-0
  8. DiGiulio DB, Callahan BJ, McMurdie PJ, Costello EK, Lyell DJ, Robaczewska A, et al. 2015. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. USA 112: 11060-11065. https://doi.org/10.1073/pnas.1502875112
  9. Alioua S, Abdi A, Fhoula I, Bringel F, Boudabous A, Ouzari IH. 2016. Diversity of vaginal lactic acid bacterial microbiota in 15 algerian pregnant women with and without bacterial vaginosis by using culture independent method. J. Clin. Diagn. Res. 10: DC23-DC27.
  10. Hammerschlag MR, Alpert S, Onderdonk AB, Thurston P, Drude E, McCormack WM, et al. 1978. Anaerobic microflora of the vagina in children. Am. J. Obstet. Gynecol. 131: 853-856. https://doi.org/10.1016/s0002-9378(16)33130-1
  11. Farage M, Maibach H. 2006. Lifetime changes in the vulva and vagina. Arch. Gynecol. Obstet. 273: 195-202. https://doi.org/10.1007/s00404-005-0079-x
  12. Gupta S, Kumar N, Singhal N, Kaur R, Manektala U. 2006. Vaginal microflora in postmenopausal women on hormone replacement therapy. Indian J. Pathol. Bacteriol. 49: 457-461.
  13. Cone RA. 2014. Vaginal microbiota and sexually transmitted infections that may influence transmission of cell-associated HIV. J. Infect. Dis. 210: S616-S621. https://doi.org/10.1093/infdis/jiu459
  14. Hyman RW, Fukushima M, Jiang H, Fung E, Rand L, Johnson B, et al. 2013. Diversity of the vaginal microbiome correlates with preterm birth. Reprod. Sci. 21: 32-40. https://doi.org/10.1177/1933719113488838
  15. Petricevic L, Domig KJ, Nierscher FJ, Sandhofer MJ, Fidesser M, Krondorfer I, et al. 2014. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery. Sci. Rep. 4: 5136. https://doi.org/10.1038/srep05136
  16. Hay PE, Lamont RF, Taylor-Robinson D, Morgan DJ, Ison C, Pearson J. 1994. Abnormal bacterial colonisation of the genital tract and subsequent preterm delivery and late miscarriage. BMJ 308: 295-298. https://doi.org/10.1136/bmj.308.6924.295
  17. Llahi-Camp JM, Rai R, Ison C, Regan L, Taylor-Robinson D. 1996. Association of bacterial vaginosis with a history of second trimester miscarriage. Hum. Reprod. 11: 1575-1578. https://doi.org/10.1093/oxfordjournals.humrep.a019440
  18. Martius J, Eschenbach DA. 1990. The role of bacterial vaginosis as a cause of amniotic fluid infection, chorioamnionitis and prematurity. Arch. Gynecol. Obstet. 247: 1-13. https://doi.org/10.1007/BF02390649
  19. Watts DH, Krohn MA, Hillier SL, Eschenbach DA. 1990. Bacterial vaginosis as a risk factor for post-cesarean endometritis. Obstet. Gynecol. 75: 52-58.
  20. Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Bieda J, et al. 2014. The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term. Microbiome 2: 18. doi: 10.1186/2049-2618-2-18.
  21. Borgdorff H , van der Veer C , van Houdt R, A lberts CJ, de Vries HJ, Bruisten SM, et al. 2017. The association between ethnicity and vaginal microbiota composition in Amsterdam, the Netherlands. PLoS One 12: e0181135. https://doi.org/10.1371/journal.pone.0181135
  22. Haque MM, M erchant M, Kumar PN, D utta A , Mande SS. 2017. First-trimester vaginal microbiome diversity: a potential indicator of preterm delivery risk. Sci. Rep. 7:16145. https://doi.org/10.1038/s41598-017-16352-y
  23. Callahan BJ, DiGiulio DB, Goltsman DSA, Sun CL, Costello EK, Jeganathan P, et al. 2017. Replication and refinement of a vaginal microbial signature of preterm birth in two racially distinct cohorts of US women. Proc. Natl. Acad. Sci. USA 114: 9966-9971. https://doi.org/10.1073/pnas.1705899114
  24. Chaban B, Links MG, Jayaprakash TP, Wagner EC, Bourque DK, Lohn Z, et al. 2014. Characterization of the vaginal microbiota of healthy Canadian women through the menstrual cycle. Microbiome 2: 23. https://doi.org/10.1186/2049-2618-2-23
  25. Chun J, Kim KY, Lee J-H, Choi Y. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10: 101. https://doi.org/10.1186/1471-2180-10-101
  26. Hur M, Kim Y, Song HR, Kim JM, Choi YI, Yi H. 2011. Effect of genetically modified Poplars on soil microbial communities during the phytoremediation of waste mine tailings. Appl. Environ. Microbiol. 77: 7611-7619. https://doi.org/10.1128/AEM.06102-11
  27. Kim BS, Kim JN, Yoon SH, Chun J, Cerniglia CE. 2012. Impact of enrofloxacin on the human intestinal microbiota revealed by comparative molecular analysis. Anaerobe 18: 310-320. https://doi.org/10.1016/j.anaerobe.2012.01.003
  28. Huber T, Faulkner G, Hugenholtz P. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317-2319. https://doi.org/10.1093/bioinformatics/bth226
  29. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. 2012. Introducing Eztaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721. https://doi.org/10.1099/ijs.0.038075-0
  30. Hamady M, Lozupone C, Knight R. 2010. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 4: 17-27. https://doi.org/10.1038/ismej.2009.97
  31. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
  32. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. 2010. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26: 266-267. https://doi.org/10.1093/bioinformatics/btp636
  33. Roberge S, Villa P, Nicolaides K, Giguere Y, Vainio M, Bakthi A, et al. 2012. Early administration of low-dose aspirin for the prevention of preterm and term preeclampsia: a systematic review and meta-analysis. Fetal Diagn. Ther. 31: 141-146 https://doi.org/10.1159/000336662
  34. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. 2011. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108: 4680-4687. https://doi.org/10.1073/pnas.1002611107
  35. Redelinghuys MJ, Ehlers MM, D reyer AW, L ombaard H A , Kock MM. 2013. Comparison of the new Mycofast Revolution assay with a molecular assay for the detection of genital mycoplasmas from clinical specimens. BMC Infect. Dis. 13: 453. https://doi.org/10.1186/1471-2334-13-453
  36. Kwak DW, Hwang HS, Kwon JY, Park YW, Kim YH. 2014. Co-infection with vaginal Ureaplasma urealyticum and Mycoplasma hominis increases adverse pregnancy outcomes in patients with preterm labor or preterm premature rupture of membranes. J. Matern. Fetal Neonatal Med. 27: 333-337. https://doi.org/10.3109/14767058.2013.818124
  37. Cox C, Saxena N, Watt AP, Gannon C, McKenna JP, Fairley DJ, et al. 2016. The common vaginal commensal bacterium Ureaplasma parvum is associated with chorioamnionitis in extreme preterm labor. J. Matern. Fetal Neonatal Med. 29: 3646-3651. https://doi.org/10.3109/14767058.2016.1140734
  38. Tabatabaei N, Eren AM, Barreiro LB, Yotova V, Dumaine A, Allard C, Fraser WD. 2018. Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: a case-control study. BJOG 126: 349-358. https://doi.org/10.1111/1471-0528.15299
  39. Bretelle F, Rozenberg P, Pascal A, Favre R, Bohec C, Loundou A, et al. 2015. High Atopobium vaginae and Gardnerella vaginalis vaginal loads are associated with preterm birth. Clin. Infect. Dis. 60: 860-867. https://doi.org/10.1093/cid/ciu966
  40. Freitas AC, Bocking A, Hill JE, Money DM; VOGUE Research Group. 2018. Increased richness and diversity of the vaginal microbiota and spontaneous preterm birth. Microbiome 6: 117. https://doi.org/10.1186/s40168-018-0502-8
  41. Freitas AC, Chaban B, Bocking A, Rocco M, Yang S, Hill JE, et al. 2017. The vaginal microbiome of pregnant women is less rich and diverse, with lower prevalence of Mollicutes, compared to non-pregnant women. Sci. Rep. 7: 9212. https://doi.org/10.1038/s41598-017-07790-9
  42. Lee JE, Lee S, Lee H, Song YM, Lee K, Han MJ, et al. 2013. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PLoS One 8: e63514. https://doi.org/10.1371/journal.pone.0063514
  43. Onderdonk AB, Delaney ML, Fichorova RN. 2016. The human microbiome during bacterial vaginosis. Clin. Microbiol. Rev. 29: 223-238. https://doi.org/10.1128/CMR.00075-15
  44. Vitali B, Cruciani F, Picone G, Parolin C, Donders G, Laghi L. 2015. Vaginal microbiome and metabolome highlight specific signatures of bacterial vaginosis. Eur. J. Clin. Microbiol. Infect. Dis. 34: 2367-2376. https://doi.org/10.1007/s10096-015-2490-y

Cited by

  1. Vaginal Microbiota Diversity of Patients with Embryonic Miscarriage by Using 16S rDNA High-Throughput Sequencing vol.2020, 2020, https://doi.org/10.1155/2020/1764959
  2. Contribution of Lactobacillus iners to Vaginal Health and Diseases: A Systematic Review vol.11, 2021, https://doi.org/10.3389/fcimb.2021.792787
  3. Vaginal bacterial load in the second trimester is associated with early preterm birth recurrence: a nested case-control study vol.128, pp.13, 2021, https://doi.org/10.1111/1471-0528.16816