References
- Bos J, Austin RH 2018. A bacterial antibiotic resistance accelerator and applications. pp. 41-57. In Methods in Cell Biology; Elsevier: NY, USA, 147. ISBN 978-0-12-814282-0.
- Rai M., Ingle AP, Pandit R, Paralikar P, Gupta I, Chaud MV, et al. 2017. Broadening the spectrum of small-molecule antibacterial by metallic nanoparticles to overcome microbial resistance. Int. J. Pharm. 532: 139-148. https://doi.org/10.1016/j.ijpharm.2017.08.127
- Prasher P, Singh M, Mudila H. 2018. Oligodynamic effect of silver nanoparticles: a review. Bio Nano Sci. 8: 951-962
- El-Sayed ASA, Ali DMI. 2018. Biosynthesis and comparative bactericidal activity of silver nanoparticles synthesized by Aspergillus flavus and Penicillium crustosum against the multidrug-resistant bacteria. J. Microbiol. Biotechnol. 28: 1-11. https://doi.org/10.4014/jmb.1708.08032
- Fatema S, Shirsat M, Farooqui M, Pathan MA. 2019. Biosynthesis of silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity. Int. J. Nano Dimension 10: 163-168.
- Alsaleh NB, Persaud I, Brown JM. 2016. Silver nanoparticledirected mast cell degranulation is mediated through calcium and PI3K signaling independent of the high affinity IgE receptor. PLoS One 11: e0167366. https://doi.org/10.1371/journal.pone.0167366
- Siddiqi KS, Husen A, Rao RAK. 2018. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology 16(1): 14. https://doi.org/10.1186/s12951-018-0334-5
- Monowar T, Rahman MS, Bhore S, Raju G, Sathasivam K. 2018. Silver nanoparticles synthesized by using the endophytic bacterium Pantoea ananatis are promising antimicrobial agents against multidrug resistant bacteria. Molecules 23(12). pii: E3220.
- Bogdanovic U, Lazic V, Vodnik V, Budimir M, Markovic Z, Dimitrijevic S. 2014. Copper nanoparticles with high antimicrobial activity. Mater. Lett. 128: 75-78. https://doi.org/10.1016/j.matlet.2014.04.106
- Al-Dahash, G, Mubdir KW, Abdul V. 2018. Preparation and characterization of ZnO nanoparticles by Laser Ablation in NaOH aqueous solution. Iran. J. Chem. Chem. Eng. 37: 11-16.
- Aparna TK, Sivasubramanian R. 2018. A Facile hydrothermal synthesis of three dimensional flower-like NiO-thermally reduced graphene oxide (trGO) nanocomposite for selective determination of dopamine in presence of uric acid and ascorbic acid. J. Nanosci. Nanotechnol. 18: 789-797. https://doi.org/10.1166/jnn.2018.13968
- Thodeti S, Reddy S, Vemula S. 2018. Synthesis and characterization of copper nanoparticles by chemical reduction method. Res. J. Sci. Tech. 10: 52-57. https://doi.org/10.5958/2349-2988.2018.00007.4
- Yadav R, Bandyopadhyay M, Saha A, Mandar A. 2015. Synthesis, characterization, antibacterial and cytotoxic assays of zinc oxide (ZnO) nanoparticles. Br. Biotechnol. J. 9: 1-10.
- Mirzapou A. 2019. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol. 124: 148-15415. https://doi.org/10.1016/j.ijbiomac.2018.11.101
- Ahmad F, Ashraf N, Ashraf T, Zhou R,Da-Chuan Yin D. 2019. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl. Microbiol. Biotechnol. 103: 2913-2935. https://doi.org/10.1007/s00253-019-09675-5
- Ovais M , Khalil A T, I slam N U, Ahmad I , Ayaz M , Saravanan M, et. al. 2018. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl. Microbiol. Biotechnol. 102: 6799-6814. https://doi.org/10.1007/s00253-018-9146-7
- Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA. 2015. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip. 29: 221-236. https://doi.org/10.1080/13102818.2015.1008194
- Ali J, Ali NLH, Pan G. 2019. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods 159: 18-25. https://doi.org/10.1016/j.mimet.2019.02.010
- Wanarska E, Maliszewsk I. 2019. The possible mechanism of the formation of silver nanoparticles by Penicillium cyclopium. Bioor. Chem. 93: 102803. https://doi.org/10.1016/j.bioorg.2019.02.028
- Vetchinkina E, Loshchinina E, Kupryashina M, Burov A, Pylaev T, Nikitina V. 2018. Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. PeerJ. 6: e5237. https://doi.org/10.7717/peerj.5237
- Mohanpuria P. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanoparticle Res. 10: 507-517. https://doi.org/10.1007/s11051-007-9275-x
- Siddiqui KS, Husen A. 2016. Fabrication of metal nanoparticles from fungi and metal salts: scope and application-Nano Review. Nanoscale Res. Lett. 11: 98-112. https://doi.org/10.1186/s11671-016-1311-2
- Otari SV, Pawar SH, Patel SKS, Sing RK, Kim SY, Lee JH, et al. 2017. Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: characterization, antimicrobial activity, and toxicity studies. J. Microbiol. Biotechnol. 27: 731-738. https://doi.org/10.4014/jmb.1610.10019
- Khan A, Malik N, Khan M, Cho MH, Khan M. 2018. Fungiassisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst. Eng. 41: 1-20. https://doi.org/10.1007/s00449-017-1846-3
- Chhipa H 2019. Chapter 5 - Mycosynthesis of nanoparticles for smart agricultural practice. pp. 87-109. A green and ecofriendly approach. Micro and Nano Technologies.
- El-Sayed MT. 2014. The response of Fusarium solani to Cd(II) and Cu(II) in pure culture. Egypt J. Microbiol. 5: 99-117.
- Otari SV, patel SKS, Kalia VC, Kim IW, Lee JK. 2019. Antimicrobial activity of Biosynthesized silver nanoparticles decorated silica nanoparticles. Indian J. Microbiol. 59: 379-382. https://doi.org/10.1007/s12088-019-00812-2
- Pan X, Medina-Ramirez I., Mernaugh R, Liu J. 2010. Nano characterization and bactericidal performance of silver modified titania photocatalyst. Colloids Surf. B Biointerfaces 77: 82-89. https://doi.org/10.1016/j.colsurfb.2010.01.010
- Bergey DH, Holt JG. Bergey's Manual of Determinative Bacteriology, 9th ed., 1994.
- Smibert RM. Krieg NR. 1994. Phenotypic Characterization. Methods for General and Molecular Bacteriology, pp. 607-654. American Society for Microbiology, Washington DC.
- Kalia VC, Patel SKS, Kang YC, Lee JK. 2019. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol. Adv. 37: 68-90. https://doi.org/10.1016/j.biotechadv.2018.11.006
- Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 45: 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
- Graham P, Lin S, Larson E. 2006. Population-based survey of Staphylococcus aureus colonization. Ann. Intern. Med. 144: 318-325. https://doi.org/10.7326/0003-4819-144-5-200603070-00006
- Krishnan T, Yin W, Chan K. 2012. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by Ayurveda spice clove (Syzygium aromaticum) bud extract. Sensors (Basel) 12: 4016-4030. https://doi.org/10.3390/s120404016
- Essar DW, Eberly L, Hadero A, Crawford IP. 1990. Identification and characterization of genes for a second anthranilate synthase in pseudomonad aeruginosa: interchangeability of the two anthranilate synthase and evolutionary implications. J. Bacteriol. 172: 884-900. https://doi.org/10.1128/jb.172.2.884-900.1990
- Daniel WW. 1999. Biostatistics: A Foundation for Analysis in the Health Sciences. 7th. ed., John Wiley & Sons, New York.
- Adur AJ, Nandini N, Mayachar K, Ramya R, Srinatha N. 2018. Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry. J. Photochem. Photobiol. B 183: 30-34. https://doi.org/10.1016/j.jphotobiol.2018.04.020
- Khalil NM, Abd El-Ghany MN, Rodriguez-Couto S. 2019. Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere 477: e486.
- Yin W, Keller NP. 2011. Transcriptional regulatory elements in fungal secondary metabolism. J. Microbiol. 49: 329-339. https://doi.org/10.1007/s12275-011-1009-1
- Cuevas R, Duran N, Diez MC, Tortella GR, Rubilar O. 2015. Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from Chilean forests. J. Nanomater. 2015: 1-7.
- Gopinath P, Marconi G, Dhanasekaran D, Ranjani A, Thajuddin N. 2015. Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrugresistant (MDR) bacterial pathogens of female infertility cases. Asian J. Pharm. Sci. 10: 138-145. https://doi.org/10.1016/j.ajps.2014.08.007
- Shende S, Gade A, Rai M. 2016. Large-scale synthesis and antibacterial activity of fungal-derived silver nanoparticles. Environ. Chem. Lett. 15: 427-434. https://doi.org/10.1007/s10311-016-0599-6
- Kumari M, Pandey S, Giri VP, Bhattacharya A., Shukla R, Mishra A, et al. 2017. Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb. Pathog. 105: 346-355. https://doi.org/10.1016/j.micpath.2016.11.012
- Kamalakannan S, Gobinath C, Ananth S. 2014. Synthesis and characterization of fungus mediated silver nanoparticle for toxicity on filarial vector, Culex quinquefasciatus. Int. J. Pharm. Sci. Rev. Res. 24: 124-132.
- Annamalai J, Nallamuthu T. 2016. Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. J. Appl. Nanosci. 6: 259-265. https://doi.org/10.1007/s13204-015-0426-6
- Priyadarshini S, Gopinath V, Meera Priyadharsshini N, Mubarak Ali D, Velusamy P, 2013. Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloid Surf. B Biointerfaces 102: 232-237. https://doi.org/10.1016/j.colsurfb.2012.08.018
- Wen L, Zeng P, Zhang L, Huang W, Wang H, Chen G. 2016. Symbiosis theory-directed green synthesis of silver nanoparticles and their application in infected wound healing, Int. J. Nanomedicine 11: 2757-2767. https://doi.org/10.2147/ijn.s106662
- Ghaseminezhad MS, Hamedi S, Abbas, S. 2012. Green synthesis of silver nanoparticles by a novel method: Comparative study of their properties. Carbohydr. Polym. 89: 467-472. https://doi.org/10.1016/j.carbpol.2012.03.030
- El-Sayed ASA, Rabie GH, El-Gazzar NS, Ali GS. 2017. Immobilization and characterization of purified Aspergillus flavus peroxidase mediated silver nanoparticle synthesis: peroxidase surface reactive residues are implemented for reduction of silver ions, more than its active sites. J. Nanomedicine Nanotechnol. 8: 1-10.
-
El-Sayed ASA, Hassan AEA, Shindia AA, Mohamed SG, Sitohy MZ. 2016. Aspergillus flavipes L-methionine
$\gamma$ -lyase dextran conjugates with enhanced structural proteolytic stability and anticancer efficiency. J. Molecular Catalysis: Benzymatic. 133: S15-S24. https://doi.org/10.1016/j.molcatb.2016.11.002 - Otari SV, P atil RM, Ghosh S J, Thorat ND, P awar SH. 2015. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 136: 1175-1180. https://doi.org/10.1016/j.saa.2014.10.003
- Praphakar RA, Jeyaraj M, Ahmed M, Kumar SS, Rajan M. 2018. Silver nanoparticle functionalized CS-g-(CA-MA-PZA) carrier for sustainable anti-tuberculosis drug delivery. Int. J. Biol. Macromol. 118: 1627-1638. https://doi.org/10.1016/j.ijbiomac.2018.07.008
- Shaoping Nie, Mingyong Xie, Zhihong Fu, Yiqun Wan, Aiping Yan. 2008. Study on the purification and chemical compositions of tea glycoprotein. Carbohydr. Polym. 71: 626-633. https://doi.org/10.1016/j.carbpol.2007.07.005
- Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. 2009. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5: 382-386. https://doi.org/10.1016/j.nano.2009.06.005
- Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, et al. 2010. A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr. Nanosci. 6: 376-380. https://doi.org/10.2174/157341310791658919
-
Priya AM, Selvan RK, Senthilkumar B, Satheeshkumar MK, Sanjeeviraja C. 2011. Synthesis and characterization of
$CdWO_4$ nanocrystals. Ceramics Intern. 37: 2485-2488. https://doi.org/10.1016/j.ceramint.2011.03.040 - Basak S, Singh P, and I Rajurkar M. 2016. Multidrug resistant and extensively drug resistant bacteria: a study. J. Pathog. 2016: 4065603. https://doi.org/10.1155/2016/4065603
- Qiao M, Ying GG, Singer AC, Zhu YG. 2018. Review of antibiotic resistance in China and its environment. Environ. Int. 110: 160-172. https://doi.org/10.1016/j.envint.2017.10.016
- Tacconell D. 2008. Methicillin?resistant Staphylococcus aureus: risk assessment and infection control policies. Clin. Microbiol. Infect. 5: 407-410. https://doi.org/10.1111/j.1469-0691.2007.01936.x
- Al GS, El-Sayed AS, Patel JS, Green KB, Ali M, Brennan M, Norman D. 2016. Ex vivo application of secreted metabolites produced by soil-inhabiting Bacillus spp efficiently controls foliar diseases caused by Alternaria spp. Appl. Environ. Microbiol. 2: 478-490.
- Das B, Dash SK, Mandal D, Adhikary J, Chattopadhyay S, Tripathy S, et al. 2016. Green-synthesized silver nanoparticles kill virulent multidrug-resistant Pseudomonas aeruginosa strains: a mechanistic study. BLDE Univ. J. Health Sci. 1: 89-101. https://doi.org/10.4103/2468-838X.196087
- Salomoni R, Leo P, Montemor AF, Rinaldi BG, Rodrigues MFA. 2017. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl. 10: 115-121. https://doi.org/10.2147/NSA.S133415
- Yuan YG, Peng QL, Gurunathan S. 2017. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int. J. Mol. Sci. 6: 18. https://doi.org/10.3390/i6010018
- Yan X, He B, Liu L, Qu G, Shi J, Hu L, et al. 2018. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics. 10: 557-564. https://doi.org/10.1039/C7MT00328E
- Ahmad T , Wani IA, Manzoor N , Ahmed J, Asiri AM. 2013. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf. B Biointerfaces 107: 227-234. https://doi.org/10.1016/j.colsurfb.2013.02.004
- Padmavathy N, Vijayaraphavan. 2008. Enhanced bioactivity of ZnO nanoparticles an antimicrobial study. Sci. Technol. Adv. Mater. 9: 035004. https://doi.org/10.1088/1468-6996/9/3/035004
- Lipovsky A, Nitzan Y, Gedanken A, Lubart R. 2011. Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology 22: 105101-105105. https://doi.org/10.1088/0957-4484/22/10/105101
- Shaalan MI, El-Mahdy MM, Theiner S, El-Matbouli M, Saleh M. 2017. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Vet. Scand. 59(1): 49. https://doi.org/10.1186/s13028-017-0317-9
- Lipovsky A, Nitzan Y, Gedanken A, Lubar R. 2011. Antifungal activity of ZnO nanoparticles- the role of ROS mediated cell injury. Nanotechnol. 11: 105101.
- El-Sayed ASA, Ali GS. 2020. Aspergillus flavipes is a novel efficient biocontrol agent of Phytophthora parasiticus. Biological Control 140: 104072. https://doi.org/10.1016/j.biocontrol.2019.104072
- Kumar N, Das S, Jyoti A, Kaushik S. 2016. Synergistic effect of silver nanoparticles with doxycycline against Klebsiella pneumonia. Int. J. Pharm. Sci. 8: 183-186.
- Ottoni CA, Simaes MF, Fernandes S, Santos JG, da Silva ES, Souza RFB, et al. 2017. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 7: 31. https://doi.org/10.1186/s13568-017-0332-2
- Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A, Perkins A. et al. 2016. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins 8: 236-249. https://doi.org/10.3390/toxins8080236
- Singh BR, Singh B N , Singh A, Khan W, N aqvi H, Singh H. 2015. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci. Rep. 5: 1-14.
Cited by
- Fusarium as a Novel Fungus for the Synthesis of Nanoparticles: Mechanism and Applications vol.7, pp.2, 2021, https://doi.org/10.3390/jof7020139
- Biosystematic Study on Some Egyptian Species of Astragalus L. (Fabaceae) vol.11, pp.2, 2020, https://doi.org/10.3390/agriculture11020125
- Endophytic Bacteria Enterobacter hormaechei Fabricated Silver Nanoparticles and Their Antimicrobial Activity vol.13, pp.4, 2020, https://doi.org/10.3390/pharmaceutics13040511
- Biosynthesis and Anti-Mycotoxigenic Activity of Zingiber officinale Roscoe-Derived Metal Nanoparticles vol.26, pp.8, 2021, https://doi.org/10.3390/molecules26082290
- Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects vol.37, pp.6, 2020, https://doi.org/10.1007/s11274-021-03070-x
- Nanomaterial-Based Antifungal Therapies to Combat Fungal Diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis vol.10, pp.10, 2020, https://doi.org/10.3390/pathogens10101303
- Efficient biocontrol of Spodoptera littoralis by Aspergillus nidulans, an endophyte of Lantana camara vol.67, pp.4, 2020, https://doi.org/10.1080/09670874.2020.1771472