DOI QR코드

DOI QR Code

Biocidal Activity of Metal Nanoparticles Synthesized by Fusarium solani against Multidrug-Resistant Bacteria and Mycotoxigenic Fungi

  • Sayed, Manal T. El (Botany and Microbiology Department, Faculty of Science, Zagazig University) ;
  • El-Sayed, Ashraf S.A. (Botany and Microbiology Department, Faculty of Science, Zagazig University)
  • Received : 2019.07.15
  • Accepted : 2019.08.24
  • Published : 2020.02.28

Abstract

Antibiotic resistance by pathogenic bacteria and fungi is one of the most serious global public health problems in the 21st century, directly affecting human health and lifestyle. Pseudomonas aeruginosa and Staphylococcus aureus with strong resistance to the common antibiotics have been isolated from Intensive Care Unit patients at Zagazig Hospital. Thus, in this study we assessed the biocidal activity of nanoparticles of silver, copper and zinc synthesized by Fusarium solani KJ 623702 against these multidrug resistant-bacteria. The synthesized Metal Nano-particles (MNPs) were characterized by UV-Vis spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Zeta potential. The Fourier transform infrared spectroscopy (FTIR) result showed the presence of different functional groups such as carboxyl, amino and thiol, ester and peptide bonds in addition to glycosidic bonds that might stabilize the dispersity of MNPs from aggregation. The antimicrobial potential of MNPs by F. solani against the multidrug-resistant (MDR) P. aeruginosa and S. aureus in addition to the mycotoxigenic Aspergillus awamori, A. fumigatus and F. oxysporum was investigated, based on the visual growth by diameter of inhibition zone. Among the synthesized MNPs, the spherical AgNPs (13.70 nm) displayed significant effect against P. aeruginosa (Zone of Inhibition 22.4 mm and Minimum Inhibitory Concentration 21.33 ㎍/ml), while ZINC oxide Nano-Particles were the most effective against F. oxysporum (ZOI, 18.5 mm and MIC 24.7 ㎍/ml). Transmission Electron Microscope micrographs of AgNP-treated P. aeruginosa showed cracks and pits in the cell wall, with internalization of NPs. Production of pyocyanin pigment was significantly inhibited by AgNPs in a concentration-dependent manner, and at 5-20 ㎍ of AgNPs/ml, the pigment production was reduced by about 15-100%, respectively.

Keywords

References

  1. Bos J, Austin RH 2018. A bacterial antibiotic resistance accelerator and applications. pp. 41-57. In Methods in Cell Biology; Elsevier: NY, USA, 147. ISBN 978-0-12-814282-0.
  2. Rai M., Ingle AP, Pandit R, Paralikar P, Gupta I, Chaud MV, et al. 2017. Broadening the spectrum of small-molecule antibacterial by metallic nanoparticles to overcome microbial resistance. Int. J. Pharm. 532: 139-148. https://doi.org/10.1016/j.ijpharm.2017.08.127
  3. Prasher P, Singh M, Mudila H. 2018. Oligodynamic effect of silver nanoparticles: a review. Bio Nano Sci. 8: 951-962
  4. El-Sayed ASA, Ali DMI. 2018. Biosynthesis and comparative bactericidal activity of silver nanoparticles synthesized by Aspergillus flavus and Penicillium crustosum against the multidrug-resistant bacteria. J. Microbiol. Biotechnol. 28: 1-11. https://doi.org/10.4014/jmb.1708.08032
  5. Fatema S, Shirsat M, Farooqui M, Pathan MA. 2019. Biosynthesis of silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity. Int. J. Nano Dimension 10: 163-168.
  6. Alsaleh NB, Persaud I, Brown JM. 2016. Silver nanoparticledirected mast cell degranulation is mediated through calcium and PI3K signaling independent of the high affinity IgE receptor. PLoS One 11: e0167366. https://doi.org/10.1371/journal.pone.0167366
  7. Siddiqi KS, Husen A, Rao RAK. 2018. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology 16(1): 14. https://doi.org/10.1186/s12951-018-0334-5
  8. Monowar T, Rahman MS, Bhore S, Raju G, Sathasivam K. 2018. Silver nanoparticles synthesized by using the endophytic bacterium Pantoea ananatis are promising antimicrobial agents against multidrug resistant bacteria. Molecules 23(12). pii: E3220.
  9. Bogdanovic U, Lazic V, Vodnik V, Budimir M, Markovic Z, Dimitrijevic S. 2014. Copper nanoparticles with high antimicrobial activity. Mater. Lett. 128: 75-78. https://doi.org/10.1016/j.matlet.2014.04.106
  10. Al-Dahash, G, Mubdir KW, Abdul V. 2018. Preparation and characterization of ZnO nanoparticles by Laser Ablation in NaOH aqueous solution. Iran. J. Chem. Chem. Eng. 37: 11-16.
  11. Aparna TK, Sivasubramanian R. 2018. A Facile hydrothermal synthesis of three dimensional flower-like NiO-thermally reduced graphene oxide (trGO) nanocomposite for selective determination of dopamine in presence of uric acid and ascorbic acid. J. Nanosci. Nanotechnol. 18: 789-797. https://doi.org/10.1166/jnn.2018.13968
  12. Thodeti S, Reddy S, Vemula S. 2018. Synthesis and characterization of copper nanoparticles by chemical reduction method. Res. J. Sci. Tech. 10: 52-57. https://doi.org/10.5958/2349-2988.2018.00007.4
  13. Yadav R, Bandyopadhyay M, Saha A, Mandar A. 2015. Synthesis, characterization, antibacterial and cytotoxic assays of zinc oxide (ZnO) nanoparticles. Br. Biotechnol. J. 9: 1-10.
  14. Mirzapou A. 2019. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol. 124: 148-15415. https://doi.org/10.1016/j.ijbiomac.2018.11.101
  15. Ahmad F, Ashraf N, Ashraf T, Zhou R,Da-Chuan Yin D. 2019. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl. Microbiol. Biotechnol. 103: 2913-2935. https://doi.org/10.1007/s00253-019-09675-5
  16. Ovais M , Khalil A T, I slam N U, Ahmad I , Ayaz M , Saravanan M, et. al. 2018. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl. Microbiol. Biotechnol. 102: 6799-6814. https://doi.org/10.1007/s00253-018-9146-7
  17. Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA. 2015. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip. 29: 221-236. https://doi.org/10.1080/13102818.2015.1008194
  18. Ali J, Ali NLH, Pan G. 2019. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods 159: 18-25. https://doi.org/10.1016/j.mimet.2019.02.010
  19. Wanarska E, Maliszewsk I. 2019. The possible mechanism of the formation of silver nanoparticles by Penicillium cyclopium. Bioor. Chem. 93: 102803. https://doi.org/10.1016/j.bioorg.2019.02.028
  20. Vetchinkina E, Loshchinina E, Kupryashina M, Burov A, Pylaev T, Nikitina V. 2018. Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. PeerJ. 6: e5237. https://doi.org/10.7717/peerj.5237
  21. Mohanpuria P. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanoparticle Res. 10: 507-517. https://doi.org/10.1007/s11051-007-9275-x
  22. Siddiqui KS, Husen A. 2016. Fabrication of metal nanoparticles from fungi and metal salts: scope and application-Nano Review. Nanoscale Res. Lett. 11: 98-112. https://doi.org/10.1186/s11671-016-1311-2
  23. Otari SV, Pawar SH, Patel SKS, Sing RK, Kim SY, Lee JH, et al. 2017. Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: characterization, antimicrobial activity, and toxicity studies. J. Microbiol. Biotechnol. 27: 731-738. https://doi.org/10.4014/jmb.1610.10019
  24. Khan A, Malik N, Khan M, Cho MH, Khan M. 2018. Fungiassisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst. Eng. 41: 1-20. https://doi.org/10.1007/s00449-017-1846-3
  25. Chhipa H 2019. Chapter 5 - Mycosynthesis of nanoparticles for smart agricultural practice. pp. 87-109. A green and ecofriendly approach. Micro and Nano Technologies.
  26. El-Sayed MT. 2014. The response of Fusarium solani to Cd(II) and Cu(II) in pure culture. Egypt J. Microbiol. 5: 99-117.
  27. Otari SV, patel SKS, Kalia VC, Kim IW, Lee JK. 2019. Antimicrobial activity of Biosynthesized silver nanoparticles decorated silica nanoparticles. Indian J. Microbiol. 59: 379-382. https://doi.org/10.1007/s12088-019-00812-2
  28. Pan X, Medina-Ramirez I., Mernaugh R, Liu J. 2010. Nano characterization and bactericidal performance of silver modified titania photocatalyst. Colloids Surf. B Biointerfaces 77: 82-89. https://doi.org/10.1016/j.colsurfb.2010.01.010
  29. Bergey DH, Holt JG. Bergey's Manual of Determinative Bacteriology, 9th ed., 1994.
  30. Smibert RM. Krieg NR. 1994. Phenotypic Characterization. Methods for General and Molecular Bacteriology, pp. 607-654. American Society for Microbiology, Washington DC.
  31. Kalia VC, Patel SKS, Kang YC, Lee JK. 2019. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol. Adv. 37: 68-90. https://doi.org/10.1016/j.biotechadv.2018.11.006
  32. Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 45: 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
  33. Graham P, Lin S, Larson E. 2006. Population-based survey of Staphylococcus aureus colonization. Ann. Intern. Med. 144: 318-325. https://doi.org/10.7326/0003-4819-144-5-200603070-00006
  34. Krishnan T, Yin W, Chan K. 2012. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by Ayurveda spice clove (Syzygium aromaticum) bud extract. Sensors (Basel) 12: 4016-4030. https://doi.org/10.3390/s120404016
  35. Essar DW, Eberly L, Hadero A, Crawford IP. 1990. Identification and characterization of genes for a second anthranilate synthase in pseudomonad aeruginosa: interchangeability of the two anthranilate synthase and evolutionary implications. J. Bacteriol. 172: 884-900. https://doi.org/10.1128/jb.172.2.884-900.1990
  36. Daniel WW. 1999. Biostatistics: A Foundation for Analysis in the Health Sciences. 7th. ed., John Wiley & Sons, New York.
  37. Adur AJ, Nandini N, Mayachar K, Ramya R, Srinatha N. 2018. Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry. J. Photochem. Photobiol. B 183: 30-34. https://doi.org/10.1016/j.jphotobiol.2018.04.020
  38. Khalil NM, Abd El-Ghany MN, Rodriguez-Couto S. 2019. Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere 477: e486.
  39. Yin W, Keller NP. 2011. Transcriptional regulatory elements in fungal secondary metabolism. J. Microbiol. 49: 329-339. https://doi.org/10.1007/s12275-011-1009-1
  40. Cuevas R, Duran N, Diez MC, Tortella GR, Rubilar O. 2015. Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from Chilean forests. J. Nanomater. 2015: 1-7.
  41. Gopinath P, Marconi G, Dhanasekaran D, Ranjani A, Thajuddin N. 2015. Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrugresistant (MDR) bacterial pathogens of female infertility cases. Asian J. Pharm. Sci. 10: 138-145. https://doi.org/10.1016/j.ajps.2014.08.007
  42. Shende S, Gade A, Rai M. 2016. Large-scale synthesis and antibacterial activity of fungal-derived silver nanoparticles. Environ. Chem. Lett. 15: 427-434. https://doi.org/10.1007/s10311-016-0599-6
  43. Kumari M, Pandey S, Giri VP, Bhattacharya A., Shukla R, Mishra A, et al. 2017. Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb. Pathog. 105: 346-355. https://doi.org/10.1016/j.micpath.2016.11.012
  44. Kamalakannan S, Gobinath C, Ananth S. 2014. Synthesis and characterization of fungus mediated silver nanoparticle for toxicity on filarial vector, Culex quinquefasciatus. Int. J. Pharm. Sci. Rev. Res. 24: 124-132.
  45. Annamalai J, Nallamuthu T. 2016. Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. J. Appl. Nanosci. 6: 259-265. https://doi.org/10.1007/s13204-015-0426-6
  46. Priyadarshini S, Gopinath V, Meera Priyadharsshini N, Mubarak Ali D, Velusamy P, 2013. Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloid Surf. B Biointerfaces 102: 232-237. https://doi.org/10.1016/j.colsurfb.2012.08.018
  47. Wen L, Zeng P, Zhang L, Huang W, Wang H, Chen G. 2016. Symbiosis theory-directed green synthesis of silver nanoparticles and their application in infected wound healing, Int. J. Nanomedicine 11: 2757-2767. https://doi.org/10.2147/ijn.s106662
  48. Ghaseminezhad MS, Hamedi S, Abbas, S. 2012. Green synthesis of silver nanoparticles by a novel method: Comparative study of their properties. Carbohydr. Polym. 89: 467-472. https://doi.org/10.1016/j.carbpol.2012.03.030
  49. El-Sayed ASA, Rabie GH, El-Gazzar NS, Ali GS. 2017. Immobilization and characterization of purified Aspergillus flavus peroxidase mediated silver nanoparticle synthesis: peroxidase surface reactive residues are implemented for reduction of silver ions, more than its active sites. J. Nanomedicine Nanotechnol. 8: 1-10.
  50. El-Sayed ASA, Hassan AEA, Shindia AA, Mohamed SG, Sitohy MZ. 2016. Aspergillus flavipes L-methionine $\gamma$-lyase dextran conjugates with enhanced structural proteolytic stability and anticancer efficiency. J. Molecular Catalysis: Benzymatic. 133: S15-S24. https://doi.org/10.1016/j.molcatb.2016.11.002
  51. Otari SV, P atil RM, Ghosh S J, Thorat ND, P awar SH. 2015. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 136: 1175-1180. https://doi.org/10.1016/j.saa.2014.10.003
  52. Praphakar RA, Jeyaraj M, Ahmed M, Kumar SS, Rajan M. 2018. Silver nanoparticle functionalized CS-g-(CA-MA-PZA) carrier for sustainable anti-tuberculosis drug delivery. Int. J. Biol. Macromol. 118: 1627-1638. https://doi.org/10.1016/j.ijbiomac.2018.07.008
  53. Shaoping Nie, Mingyong Xie, Zhihong Fu, Yiqun Wan, Aiping Yan. 2008. Study on the purification and chemical compositions of tea glycoprotein. Carbohydr. Polym. 71: 626-633. https://doi.org/10.1016/j.carbpol.2007.07.005
  54. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. 2009. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5: 382-386. https://doi.org/10.1016/j.nano.2009.06.005
  55. Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, et al. 2010. A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr. Nanosci. 6: 376-380. https://doi.org/10.2174/157341310791658919
  56. Priya AM, Selvan RK, Senthilkumar B, Satheeshkumar MK, Sanjeeviraja C. 2011. Synthesis and characterization of $CdWO_4$ nanocrystals. Ceramics Intern. 37: 2485-2488. https://doi.org/10.1016/j.ceramint.2011.03.040
  57. Basak S, Singh P, and I Rajurkar M. 2016. Multidrug resistant and extensively drug resistant bacteria: a study. J. Pathog. 2016: 4065603. https://doi.org/10.1155/2016/4065603
  58. Qiao M, Ying GG, Singer AC, Zhu YG. 2018. Review of antibiotic resistance in China and its environment. Environ. Int. 110: 160-172. https://doi.org/10.1016/j.envint.2017.10.016
  59. Tacconell D. 2008. Methicillin?resistant Staphylococcus aureus: risk assessment and infection control policies. Clin. Microbiol. Infect. 5: 407-410. https://doi.org/10.1111/j.1469-0691.2007.01936.x
  60. Al GS, El-Sayed AS, Patel JS, Green KB, Ali M, Brennan M, Norman D. 2016. Ex vivo application of secreted metabolites produced by soil-inhabiting Bacillus spp efficiently controls foliar diseases caused by Alternaria spp. Appl. Environ. Microbiol. 2: 478-490.
  61. Das B, Dash SK, Mandal D, Adhikary J, Chattopadhyay S, Tripathy S, et al. 2016. Green-synthesized silver nanoparticles kill virulent multidrug-resistant Pseudomonas aeruginosa strains: a mechanistic study. BLDE Univ. J. Health Sci. 1: 89-101. https://doi.org/10.4103/2468-838X.196087
  62. Salomoni R, Leo P, Montemor AF, Rinaldi BG, Rodrigues MFA. 2017. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl. 10: 115-121. https://doi.org/10.2147/NSA.S133415
  63. Yuan YG, Peng QL, Gurunathan S. 2017. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int. J. Mol. Sci. 6: 18. https://doi.org/10.3390/i6010018
  64. Yan X, He B, Liu L, Qu G, Shi J, Hu L, et al. 2018. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics. 10: 557-564. https://doi.org/10.1039/C7MT00328E
  65. Ahmad T , Wani IA, Manzoor N , Ahmed J, Asiri AM. 2013. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf. B Biointerfaces 107: 227-234. https://doi.org/10.1016/j.colsurfb.2013.02.004
  66. Padmavathy N, Vijayaraphavan. 2008. Enhanced bioactivity of ZnO nanoparticles an antimicrobial study. Sci. Technol. Adv. Mater. 9: 035004. https://doi.org/10.1088/1468-6996/9/3/035004
  67. Lipovsky A, Nitzan Y, Gedanken A, Lubart R. 2011. Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology 22: 105101-105105. https://doi.org/10.1088/0957-4484/22/10/105101
  68. Shaalan MI, El-Mahdy MM, Theiner S, El-Matbouli M, Saleh M. 2017. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Vet. Scand. 59(1): 49. https://doi.org/10.1186/s13028-017-0317-9
  69. Lipovsky A, Nitzan Y, Gedanken A, Lubar R. 2011. Antifungal activity of ZnO nanoparticles- the role of ROS mediated cell injury. Nanotechnol. 11: 105101.
  70. El-Sayed ASA, Ali GS. 2020. Aspergillus flavipes is a novel efficient biocontrol agent of Phytophthora parasiticus. Biological Control 140: 104072. https://doi.org/10.1016/j.biocontrol.2019.104072
  71. Kumar N, Das S, Jyoti A, Kaushik S. 2016. Synergistic effect of silver nanoparticles with doxycycline against Klebsiella pneumonia. Int. J. Pharm. Sci. 8: 183-186.
  72. Ottoni CA, Simaes MF, Fernandes S, Santos JG, da Silva ES, Souza RFB, et al. 2017. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 7: 31. https://doi.org/10.1186/s13568-017-0332-2
  73. Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A, Perkins A. et al. 2016. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins 8: 236-249. https://doi.org/10.3390/toxins8080236
  74. Singh BR, Singh B N , Singh A, Khan W, N aqvi H, Singh H. 2015. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci. Rep. 5: 1-14.

Cited by

  1. Fusarium as a Novel Fungus for the Synthesis of Nanoparticles: Mechanism and Applications vol.7, pp.2, 2021, https://doi.org/10.3390/jof7020139
  2. Biosystematic Study on Some Egyptian Species of Astragalus L. (Fabaceae) vol.11, pp.2, 2020, https://doi.org/10.3390/agriculture11020125
  3. Endophytic Bacteria Enterobacter hormaechei Fabricated Silver Nanoparticles and Their Antimicrobial Activity vol.13, pp.4, 2020, https://doi.org/10.3390/pharmaceutics13040511
  4. Biosynthesis and Anti-Mycotoxigenic Activity of Zingiber officinale Roscoe-Derived Metal Nanoparticles vol.26, pp.8, 2021, https://doi.org/10.3390/molecules26082290
  5. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects vol.37, pp.6, 2020, https://doi.org/10.1007/s11274-021-03070-x
  6. Nanomaterial-Based Antifungal Therapies to Combat Fungal Diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis vol.10, pp.10, 2020, https://doi.org/10.3390/pathogens10101303
  7. Efficient biocontrol of Spodoptera littoralis by Aspergillus nidulans, an endophyte of Lantana camara vol.67, pp.4, 2020, https://doi.org/10.1080/09670874.2020.1771472