References
- Anthonsen HW, Baptista A, Drablos F, Martel P, Petersen SB, Sebastiao M, et al. 1995. Lipases and esterases: a review of their sequences, structure and evolution, Biotechnol. Annu. Rev. 1: 315-371. https://doi.org/10.1016/S1387-2656(08)70056-5
-
Nardini M, Dijkstra BW. 1999.
${\alpha}/{\beta}$ Hydrolase fold enzymes: the family keeps growing. Curr. Opin. Struct. Biol. 9: 732-737. https://doi.org/10.1016/S0959-440X(99)00037-8 - Bornscheuer UT. 2002. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 26: 73-81. https://doi.org/10.1016/S0168-6445(01)00075-4
- Fu J, Leiros HK, de Pascale D, Johnson KA, Blencke HM, Landfald B. 2013. Functional and structural studies of a novel cold-adapted esterase from an Arctic intertidal metagenomic library. Appl. Microbiol. Biotechnol. 97: 3965-3978. https://doi.org/10.1007/s00253-012-4276-9
- Kim HJ, Jeong YS, Jung WK, Kim SK, Lee HW, Kahng HY, et al. 2015. Characterization of novel family IV esterase and family I. 3 lipase from an oil-polluted mud flat metagenome. Mol. Biotechnol. 57: 781-792. https://doi.org/10.1007/s12033-015-9871-4
- Arpigny JL, Jaeger KE. 1999. Bacterial lipolytic enzymes: classification and properties. Biochem. J. 343: 177-183. https://doi.org/10.1042/bj3430177
- Hemila H, Koivula TT, Palva I. 1994. Hormone-sensitive lipase is closely related to several bacterial proteins, and distantly related to acetylcholinesterase and lipoprotein lipase: Identification of a superfamily of esterases and lipases. Biochim. Biophys. Acta 1210: 249-253. https://doi.org/10.1016/0005-2760(94)90129-5
- Mandrich L, Merone L, Pezzullo M, Cipolla L, Nicotra F, Rossi M, et al. 2005. Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family.J. Mol. Biol. 345: 501-512. https://doi.org/10.1016/j.jmb.2004.10.035
- Nam KH, Kim MY, Kim SJ, Priyadarshi A, Lee WH, Hwang KY. 2009. Structural and functional analysis of a novel EstE5 belonging to the subfamily of hormone-sensitive lipase. Biochem. Biophys. Res. Commun. 379: 553-556. https://doi.org/10.1016/j.bbrc.2008.12.085
- Rhee JK, Ahn DG, Kim YG, Oh JW. 2005. New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl. Environ. Microbiol. 71: 817-825. https://doi.org/10.1128/AEM.71.2.817-825.2005
- Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Martins dos Santos VA, Yakimov MM, et al. 2005. Microbial enzymes mined from the urania deep-sea hypersaline anoxic basin. Chem. Biol. 12: 895-904. https://doi.org/10.1016/j.chembiol.2005.05.020
- Jeon JH, Kim JT, Kang SG, Lee JH, Kim SJ. 2009. Characterization and its potential application of two esterases derived from the Arctic sediment metagenome. Mar. Biotechnol. 11: 307-316. https://doi.org/10.1007/s10126-008-9145-2
- Hu Y, Fu C, Huang Y, Yin Y, Cheng G, Lei F, et al. 2010. Novel lipolytic genes from the microbial metagenomic library of the South China Sea marine sediment. FEMS Microbiol. Ecol. 72: 228-237. https://doi.org/10.1111/j.1574-6941.2010.00851.x
- Bunterngsook B, Kanokratana P, Thongaram T, Tanapongpipat S, Uengwetwanit T, Rachdawong S, et al. 2010. Identification and characterization of lipolytic enzymes from a peat-swamp forest soil metagenome. Biosci. Biotechnol. Biochem. 74: 1848-1854. https://doi.org/10.1271/bbb.100249
- Hough DW, Danson MJ. 1999. Extremozymes. Curr. Opin. Chem. Biol. 3: 39-46. https://doi.org/10.1016/S1367-5931(99)80008-8
- Adams MWW, Perler FB, Kelly RM. 1995. Extremozymes: Expanding the limits of biocatalysis. Biotechnology. 13: 662-668.
- Gomes JS, Walter. 2004. The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol. 42: 223-235.
- Bowers KJ, Mesbah NM, Wiegel J. 2009. Biodiversity of poly-extremophilic bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Systems. 5: 9. https://doi.org/10.1186/1746-1448-5-9
- Pire C, Marhuenda-egea FC, Esclapez J, Alcaraz L, Ferrer J, Jose Bonete M. 2004. Stability and enzymatic studies of glucose dehydrogenase from the archaeon Haloferax mediterranei in reverse micelles. Biocatal. Biotransformation. 22: 17-23. https://doi.org/10.1080/10242420310001643179
- Demirjian DC, Mori's-Varas F, Cassidy CS. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144-151. https://doi.org/10.1016/S1367-5931(00)00183-6
- Trincone A. 2011. Marine biocatalysts: enzymatic features and applications. Mar. Drugs 9: 478-499. https://doi.org/10.3390/md9040478
- Fucinos P, Gonzalez R, Atanes E, Sestelo ABF, Perez-Guerra N, Pastrana L, et al. 2012. Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27, pp. 239-266. In Sandoval G (ed.), Lipases and phospholipases: Methods and Protocols, Ed. Humana Press, Totowa, NJ.
- Karan R, Capes MD, DasSarma S. 2012. Function and biotechnology of extremophilic enzymes in low water activity. Aqua. Biosyst. 8: 4. https://doi.org/10.1186/2046-9063-8-4
- Panda T, Gowrishankar B. 2005. Production and applications of esterases. Appl. Microbiol. Biotechnol. 67: 160-169. https://doi.org/10.1007/s00253-004-1840-y
- Jegannathan KR, Nielsen PH. 2013. Environmental assessment of enzyme use in industrial production-a literature review. J. Clean. Prod. 42: 228-240. https://doi.org/10.1016/j.jclepro.2012.11.005
- Ramnath L, Sithole B, Govinden R. 2016. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can. J. Microbiol. 63: 179-192. https://doi.org/10.1139/cjm-2016-0447
- Rao TE, Imchen M, Kumavath R. 2017. Marine enzymes: production and applications for human health. Adv. Food Nutr. Res. 80: 149-163. https://doi.org/10.1016/bs.afnr.2016.11.006
- Sasso F, Natalello A, Castoldi S, Lotti M, Santambrogio C, Grandori R. 2016. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production. Biotechnol. J. 11: 954-960. https://doi.org/10.1002/biot.201500305
- Yang SZ, Jin HJ, Wei Z, He RX, Ji YJ, Li XM, et al. 2009. Bioremediation of oil spills in cold environments: a review. Pedosphere. 19: 371-381. https://doi.org/10.1016/S1002-0160(09)60128-4
- Alcaide M, Stogios PJ, Lafraya A, Tchigvintsev A, Flick R, Bargiela R, et al. 2015. Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats. Environ. Microbiol. 17: 332-345. https://doi.org/10.1111/1462-2920.12660
- Kulakova L, Galkin A, Nakayama T, Nishino T, Esaki N. 2004. Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly->Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65. https://doi.org/10.1016/j.bbapap.2003.09.008
- Li PY, Ji P, Li CY, Zhang Y, Wang GL, Zhang XY, et al. 2014. Structural basis for dimerization and catalysis of a novel esterase from the GTSAG motif subfamily of the bacterial hormone-sensitive lipase family. J. Biol. Chem. 289: 19031-19041. https://doi.org/10.1074/jbc.M114.574913
- Li PY, Chen XL, Ji P, Li CY, Wang P, Zhang Y, et al. 2015. Interdomain hydrophobic interactions modulate the thermostability of microbial esterases from the hormonesensitive lipase family. J. Biol. Chem. 290: 11188-11198. https://doi.org/10.1074/jbc.M115.646182
- Wang G, Wang Q, Lin X, Bun Ng T, Yan R, Lin J, Ye X. 2016. A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake. Sci. Rep. 6: 19494. https://doi.org/10.1038/srep19494
- Zhang Y , Hao J, Zhang YQ, Chen XL, X ie BB, Shi M, et al. 2017. Identification and characterization of a novel salttolerant esterase from the deep-sea sediment of the South China Sea. Front. Microbiol. 8: 441.
- Kuntz Jr ID. 1971. Hydration of macromolecules. IV. Polypeptide conformation in frozen solutions. J. Am. Chem. Soc. 93: 516-518. https://doi.org/10.1021/ja00731a037
- Persson E, Halle B. 2008. Cell water dynamics on multiple time scales. Proc. Natl. Acad. Sci. USA 105: 6266-6271. https://doi.org/10.1073/pnas.0709585105
Cited by
- Increased mRNA Stability and Expression Level of Croceibacter atlanticus Lipase Gene Developed through Molecular Evolution Process vol.31, pp.6, 2020, https://doi.org/10.4014/jmb.2103.03011
- Characterization of a Novel Family IV Esterase Containing a Predicted CzcO Domain and a Family V Esterase with Broad Substrate Specificity from an Oil-Polluted Mud Flat Metagenomic Library vol.11, pp.13, 2020, https://doi.org/10.3390/app11135905