DOI QR코드

DOI QR Code

Where Some Inert Minimal Ring Extensions of a Commutative Ring Come from

  • 투고 : 2019.06.12
  • 심사 : 2020.01.10
  • 발행 : 2020.03.31

초록

Let (A, M) ⊂ (B, N) be commutative quasi-local rings. We consider the property that there exists a ring D such that A ⊆ D ⊂ B and the extension D ⊂ B is inert. Examples show that the number of such D may be any non-negative integer or infinite. The existence of such D does not imply M ⊆ N. Suppose henceforth that M ⊆ N. If the field extension A/M ⊆ B/N is algebraic, the existence of such D does not imply that B is integral over A (except when B has Krull dimension 0). If A/M ⊆ B/N is a minimal field extension, there exists a unique such D, necessarily given by D = A + N (but it need not be the case that N = MB). The converse fails, even if M = N and B/M is a finite field.

키워드

참고문헌

  1. M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading (MA), 1969.
  2. J.-P. Cahen, D. E. Dobbs and T. G. Lucas, Characterizing minimal ring extensions, Rocky Mountain J. Math., 41(2011), 1081-1125. https://doi.org/10.1216/RMJ-2011-41-4-1081
  3. S. U. Chase, D. K. Harrison and A. Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc., 52(1965), 15-33.
  4. P. M. Cohn, Bezout rings and their subrings, Proc. Cambridge Philos. Soc., 64(1968), 251-264. https://doi.org/10.1017/S0305004100042791
  5. D. L. Costa, Retracts of polynomial rings, J. Algebra, 44(1977), 492-502. https://doi.org/10.1016/0021-8693(77)90197-1
  6. D. E. Dobbs, Every commutative ring has a minimal ring extension, Comm. Algebra, 34(2006), 3875-3881. https://doi.org/10.1080/00927870600862706
  7. D. E. Dobbs, Recent progress on minimal ring extensions and related concepts, Int. J. Math. Game Theory Algebra, 18(3)(2009), 187-212.
  8. D. E. Dobbs, On the commutative rings with at most two proper subrings, Int. J. Math. Math. Sci., (2016), Art. ID 6912360, 13 pages.
  9. D. E. Dobbs, Certain towers of ramified minimal ring extensions of commutative rings, Comm. Algebra, 46(8)(2018), 3461-3495. https://doi.org/10.1080/00927872.2017.1412446
  10. D. E. Dobbs, Characterizing finite fields via minimal ring extensions, Comm. Algebra, 47(2019), 4945--4957. https://doi.org/10.1080/00927872.2019.1603303
  11. D. E. Dobbs, A minimal ring extension of a large finite local prime ring is probably ramified, J. Algebra Appl., 19(2020), 2050015, 27 pp. https://doi.org/10.1142/S0219498820500152
  12. D. E. Dobbs, On the nature and number of isomorphism classes of the minimal ring extensions of a finite commutative ring, submitted for publication.
  13. D. E. Dobbs, B. Mullins, G. Picavet, and M. Picavet-L'Hermitte, On the FIP property for extensions of commutative rings, Comm. Algebra, 33(2005), 3091-3119. https://doi.org/10.1081/AGB-200066123
  14. D. E. Dobbs, G. Picavet, M. Picavet-L'Hermitte and J. Shapiro, On intersections and composites of minimal ring extensions, JP J. Algebra, Number Theory Appl., 26(2012), 103-158.
  15. D. E. Dobbs and J. Shapiro, A classification of the minimal ring extensions of certain commutative rings, J. Algebra, 308(2007), 800-821. https://doi.org/10.1016/j.jalgebra.2006.07.024
  16. D. Ferrand and J.-P. Olivier, Homomorphismes minimaux d'anneaux, J. Algebra, 16(1970), 461-471. https://doi.org/10.1016/0021-8693(70)90020-7
  17. M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl., 123(1980), 331-355. https://doi.org/10.1007/BF01796550
  18. G. L. Ganske and B. R. McDonald, Finite local rings, Rocky Mountain J. Math., 3(4)(1973), 521-540. https://doi.org/10.1216/RMJ-1973-3-4-521
  19. R. W. Gilmer, Multiplicative ideal theory, Queen's Papers in Pure Appl. Math. 12, Queen's Univ., Kingston, Ont., 1968.
  20. R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972.
  21. B. Greenberg, Coherence in cartesian squares, J. Algebra, 50(1978), 12-25. https://doi.org/10.1016/0021-8693(78)90170-9
  22. J. A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York, 1988.
  23. N. Jacobson, Lectures in abstract algebra III: theory of fields and Galois theory, Van Nostrand, Princeton-Toronto-London-New York, 1964.
  24. G. J. Janusz, Separable algebras over commutative rings, Trans. Amer. Math. Soc., 122(1966), 461-479. https://doi.org/10.1090/S0002-9947-1966-0210699-5
  25. I. Kaplansky, Fields and rings, Univ. Chicago Press, Chicago, 1969.
  26. I. Kaplansky, Commutative rings, rev. ed., Univ. Chicago Press, Chicago, 1974.
  27. S. Lang, Algebra, Addison-Wesley, Reading (MA), 1965.
  28. T. G. Lucas, Minimal integral ring extensions, J. Commut. Algebra, 3(1)(2011), 47-81. https://doi.org/10.1216/JCA-2011-3-1-47
  29. B. R. McDonald, Finite rings with identity, Marcel Dekker, New York, 1974.
  30. M. Nagata, Local rings, Wiley-Interscience, New York, 1962.
  31. G. Picavet and M. Picavet-L'Hermitte, About minimal morphisms, Multiplicative Ideal Theory in Commutative Algebra, 369-386, Springer, New York, 2006.
  32. G. Picavet and M. Picavet-L'Hermitte, Modules with finitely many submodules, Int. Electron. J. Algebra, 19(2016), 119-131. https://doi.org/10.24330/ieja.266197
  33. O. Zariski and P. Samuel, Commutative algebra I, Van Nostrand, Princeton-Toronto-London, 1958.