DOI QR코드

DOI QR Code

일라이트의 비등방적 압축특성 연구

A Study on Anisotropic Compression Behavior of Illite

  • 윤서희 (연세대학교 지구시스템과학과) ;
  • 이용재 (연세대학교 지구시스템과학과)
  • Yun, Seohee (Department of Earth System Sciences, Yonsei University) ;
  • Lee, Yongjae (Department of Earth System Sciences, Yonsei University)
  • 투고 : 2020.01.22
  • 심사 : 2020.03.02
  • 발행 : 2020.03.31

초록

천연산 일라이트(K0.65Al2(Al0.65Si3.35)O10(OH)2) 분말 시료에 대해 물과 알코올(메탄올:에탄올 = 4:1 체적비, ME41)의 두 가지 압력매개체를 이용한 다이아몬드앤빌셀 고압 회절실험을 진행하였다. 물을 이용한 실험에서는 층간 유입을 유도하기 위해 약 250℃까지 열을 가하는 과정을 거치며 최대 약 2.7 GPa까지 압력을 가하였고, 알코올을 이용한 실험에서는 상온에서 최대 약 6.9 GPa까지 가압하면서 방사광 분말 회절법을 통해 시료의 압축특성을 관찰하였다. 위와 같은 조건에서는 층간의 확장이나 상전이는 관찰되지 않았다. 물과 알코올의 서로 다른 압력매개체 하에서 압축된 일라이트의 체적탄성률(K0)은 각각 45(3) GPa와 51(3) GPa로 도출되어 오차범위 내에서 크게 다르지 않음을 확인하였다. 또한 회절자료 분석결과 격자상수에 따른 선형압축률은 알코올 압력매개체일 때 βa, βb, βc의 값이 각각 0.0025 GPa-1, 0.0029 GPa-1, 0.0144 GPa-1로 도출되어 c-축의 압축률이 약 6배 큰 것으로 확인되었다. 본 연구에서 확인된 일라이트의 체적탄성률 및 선형압축률을 일라이트와 구조적으로 유사한 백운모와 비교하였다.

High-pressure synchrotron X-ray powder diffraction experiments were performed on natural illite (K0.65Al2(Al0.65Si3.35)O10(OH)2) using diamond anvil cell (DAC) under two different pressure transmitting media (PTM), i.e., water and ME41 (methanol:ethanol = 4:1 by volume). When using water as PTM, occasional heating was applied up to about 250℃ while reaching pressure up to 2.7 GPa in order to promote both hydrostatic conditions and intercalation of water molecules into the layer. When using ME41, pressure was reached up to 6.9 GPa at room temperature. Under these conditions, illite did not show any expansion of interlayer distance or phase transitions. Pressure-volume data were used to derive bulk moduli (K0) of 45(3) GPa under water and 51(3) GPa under ME41 PTM. indicating no difference in compressibility within the analytical error. Linear compressibilities were then calculated to be βa = 0.0025, βb = 0.0029, βc = 0.0144 under ME41 PTM showing the c-axis is ca. six times more compressible than a- and b-axes. These elastic behaviors of illite were compared to muscovite, one of its structural analogues.

키워드

참고문헌

  1. Grim, R.E., Bray, R.H. and Bradley, W.F., 1937, The Mica in Argillaceous Sediments. American Mineralogist, 22, 813-829.
  2. George V. Chilingar (2). and L.K., 1960, Relationship Between Pressure and Moisture Content of Kaolinite, Illite, and Montmorillonite Clays. AAPG Bulletin, 44, 101-106.
  3. Windom, H.L., 1976, Lithogeneous materials in marine sediments. Chemical Oceanography, 5, 103-135.
  4. Hazen, R.M. and Finger, L.W., 1978, The crystal structures and compressibilities of layer minerals at high pressure; II, phlogopite and chlorite. American Mineralogist, 63, 293-296.
  5. Brindley, G.W. and Brown, G., 1980, Crystal structures of clay minerals and their X-ray identification. London Mineralogical Society, Monograph 5, 495 p.
  6. Bailey, S.W., Brindley, G.W., Fanning, D.S., Kodama, H. and Martin, R. T., 1984, Report of The Clay Minerals Society Nomenclature Committee for 1982 and 1983. Clays & Clay Minerals, 32, 239-240. https://doi.org/10.1346/CCMN.1984.0320316
  7. Srodon, J., Eberl, D.D. and Bailey, S.W., 1984, Illite. Micas, 13, 495-544. https://doi.org/10.1515/9781501508820-016
  8. Mao, H.K., Xu, J.A. and Bell, P.M., 1986, Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions. Journal of Geophysical Research: Solid Earth, 91, 4673-4676. https://doi.org/10.1029/JB091iB05p04673
  9. Bailey, S.W., 1988, Chlorites; structures and crystal chemistry. Reviews in Mineralogy and Geochemistry, 19, 347-403.
  10. Le Bail, A., Duroy, H. and Fourquet, J.L., 1988, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447-452. https://doi.org/10.1016/0025-5408(88)90019-0
  11. Sekine, T., Rubin, A.M. and Ahrens, T.J., 1991, Shock wave equation of state of muscovite. Journal of Geophysical Research: Solid Earth, 96, 19675-19680. https://doi.org/10.1029/91JB02253
  12. Drits, V.A., Weber, F., Salyn, A.L. and Tsipursky, S.I., 1993, X-ray identification of one-layer illite varieties: Application to the study of illites around uranium deposits of Canada. Clays and Clay Minerals, 41, 389-398. https://doi.org/10.1346/CCMN.1993.0410316
  13. Catti, M., Ferraris, G., Hull, S. and Pavese, A., 1994, Powder neutron diffraction study of 2M1 muscovite at room pressure and at 2 GPa. European Journal of Mineralogy-Ohne Beihefte, 6, 171-178. https://doi.org/10.1127/ejm/6/2/0171
  14. Faust, J. and Knittle, E., 1994, The equation of state, amorphization, and high-pressure phase diagram of muscovite. Journal of Geophysical Research: Solid Earth, 99, 19785-19792. https://doi.org/10.1029/94JB01185
  15. Comodi, P. and Francesco Zanazzi, P., 1995, High-pressure structural study of muscovite. Physics and Chemistry of Minerals, 22, 170-177. https://doi.org/10.1007/BF00202297
  16. Yates, D.M. and Rosenberg, P.E., 1997, Formation and stability of endmember illite: II. Solid equilibration experiments at 100 to 250$^{\circ}C$ and $P_{v,soln}$. Geochimica et Cosmochimica Acta, 61, 3135-3144. https://doi.org/10.1016/S0016-7037(97)00156-7
  17. Kloprogge, J.T., Komarneni, S. and Amonette, J.E., 1999, Synthesis of smectite clay minerals: a critical review. Clays and Clay Minerals, 47, 529-554. https://doi.org/10.1346/CCMN.1999.0470501
  18. Toby, B.H., 2001, EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210-213. https://doi.org/10.1107/S0021889801002242
  19. Wang, Z., Wang, H. and Cates, M. E., 2001, Effective elastic properties of solid clays. Geophysics, 66, 428-440 https://doi.org/10.1190/1.1444934
  20. Gualtieri, A.F. and Ferrari, S., 2006, Kinetics of illite dehydroxylation. Physics and Chemistry of Minerals, 33, 490. https://doi.org/10.1007/s00269-006-0092-z
  21. Wenk, H.R., Lonardelli, I., Franz, H., Nihei, K. and Nakagawa, S., 2007, Preferred orientation and elastic anisotropy of illite-rich shale. Geophysics, 72, E69-E75. https://doi.org/10.1190/1.2432263
  22. Chapman, K.W., Chupas, P.J., Winans, R.E. and Pugmire, R. J., 2008, High pressure pair distribution function studies of Green River oil shale. The journal of Physical Chemistry C, 112, 9980-9982. https://doi.org/10.1021/jp803900s
  23. Ortega-Castro, J., Hernandez-Haro, N., Timon, V., Sainz-Diaz, C.I. and Hernandez-Laguna, A., 2010, High-pressure behavior of 2M1 muscovite. American Mineralogist, 95, 249-259. https://doi.org/10.2138/am.2010.3035
  24. Welch, M.D. and Crichton, W.A., 2010, Pressure-induced transformations in kaolinite. American Mineralogist, 95, 651-654. https://doi.org/10.2138/am.2010.3408
  25. Cheng, H., Liu, Q., Yang, J., Ma, S. and Frost, R.L., 2012, The thermal behavior of kaolinite intercalation complexes-A review. Thermochimica Acta, 545, 1-13. https://doi.org/10.1016/j.tca.2012.04.005
  26. Angel, R.J., Alvaro, M. and Gonzalez-Platas, J., 2014, Eos-Fit7c and a Fortran module (library) for equation of state calculations. Zeitschrift Für Kristallographie - Crystalline Materials, 229, 405-419. https://doi.org/10.1515/zkri-2013-1711
  27. Prescher, C. and Prakapenka, V.B., 2015, DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223-230. https://doi.org/10.1080/08957959.2015.1059835
  28. Hwang, H., Seoung, D., Lee, Y., Liu, Z., Liermann, H.P., Cynn, H., Vogt, T., Kao, C.C., and Mao, H.K., 2017, A role for subducted super-hydrated kaolinite in Earth's deep water cycle. Nature Geoscience, 10, 947-953. https://doi.org/10.1038/s41561-017-0008-1
  29. Ebert, M., Kowitz, A., Schmitt, R.T., Reimold, W.U., Mansfeld, U. and Langenhorst, F., 2018, Localized shockinduced melting of sandstone at low shock pressures (<17.5 GPa): An experimental study. Meteoritics & Planetary Science, 53, 1633-1643. https://doi.org/10.1111/maps.12948