참고문헌
- Grim, R.E., Bray, R.H. and Bradley, W.F., 1937, The Mica in Argillaceous Sediments. American Mineralogist, 22, 813-829.
- George V. Chilingar (2). and L.K., 1960, Relationship Between Pressure and Moisture Content of Kaolinite, Illite, and Montmorillonite Clays. AAPG Bulletin, 44, 101-106.
- Windom, H.L., 1976, Lithogeneous materials in marine sediments. Chemical Oceanography, 5, 103-135.
- Hazen, R.M. and Finger, L.W., 1978, The crystal structures and compressibilities of layer minerals at high pressure; II, phlogopite and chlorite. American Mineralogist, 63, 293-296.
- Brindley, G.W. and Brown, G., 1980, Crystal structures of clay minerals and their X-ray identification. London Mineralogical Society, Monograph 5, 495 p.
- Bailey, S.W., Brindley, G.W., Fanning, D.S., Kodama, H. and Martin, R. T., 1984, Report of The Clay Minerals Society Nomenclature Committee for 1982 and 1983. Clays & Clay Minerals, 32, 239-240. https://doi.org/10.1346/CCMN.1984.0320316
- Srodon, J., Eberl, D.D. and Bailey, S.W., 1984, Illite. Micas, 13, 495-544. https://doi.org/10.1515/9781501508820-016
- Mao, H.K., Xu, J.A. and Bell, P.M., 1986, Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions. Journal of Geophysical Research: Solid Earth, 91, 4673-4676. https://doi.org/10.1029/JB091iB05p04673
- Bailey, S.W., 1988, Chlorites; structures and crystal chemistry. Reviews in Mineralogy and Geochemistry, 19, 347-403.
- Le Bail, A., Duroy, H. and Fourquet, J.L., 1988, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447-452. https://doi.org/10.1016/0025-5408(88)90019-0
- Sekine, T., Rubin, A.M. and Ahrens, T.J., 1991, Shock wave equation of state of muscovite. Journal of Geophysical Research: Solid Earth, 96, 19675-19680. https://doi.org/10.1029/91JB02253
- Drits, V.A., Weber, F., Salyn, A.L. and Tsipursky, S.I., 1993, X-ray identification of one-layer illite varieties: Application to the study of illites around uranium deposits of Canada. Clays and Clay Minerals, 41, 389-398. https://doi.org/10.1346/CCMN.1993.0410316
- Catti, M., Ferraris, G., Hull, S. and Pavese, A., 1994, Powder neutron diffraction study of 2M1 muscovite at room pressure and at 2 GPa. European Journal of Mineralogy-Ohne Beihefte, 6, 171-178. https://doi.org/10.1127/ejm/6/2/0171
- Faust, J. and Knittle, E., 1994, The equation of state, amorphization, and high-pressure phase diagram of muscovite. Journal of Geophysical Research: Solid Earth, 99, 19785-19792. https://doi.org/10.1029/94JB01185
- Comodi, P. and Francesco Zanazzi, P., 1995, High-pressure structural study of muscovite. Physics and Chemistry of Minerals, 22, 170-177. https://doi.org/10.1007/BF00202297
-
Yates, D.M. and Rosenberg, P.E., 1997, Formation and stability of endmember illite: II. Solid equilibration experiments at 100 to 250
$^{\circ}C$ and$P_{v,soln}$ . Geochimica et Cosmochimica Acta, 61, 3135-3144. https://doi.org/10.1016/S0016-7037(97)00156-7 - Kloprogge, J.T., Komarneni, S. and Amonette, J.E., 1999, Synthesis of smectite clay minerals: a critical review. Clays and Clay Minerals, 47, 529-554. https://doi.org/10.1346/CCMN.1999.0470501
- Toby, B.H., 2001, EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210-213. https://doi.org/10.1107/S0021889801002242
- Wang, Z., Wang, H. and Cates, M. E., 2001, Effective elastic properties of solid clays. Geophysics, 66, 428-440 https://doi.org/10.1190/1.1444934
- Gualtieri, A.F. and Ferrari, S., 2006, Kinetics of illite dehydroxylation. Physics and Chemistry of Minerals, 33, 490. https://doi.org/10.1007/s00269-006-0092-z
- Wenk, H.R., Lonardelli, I., Franz, H., Nihei, K. and Nakagawa, S., 2007, Preferred orientation and elastic anisotropy of illite-rich shale. Geophysics, 72, E69-E75. https://doi.org/10.1190/1.2432263
- Chapman, K.W., Chupas, P.J., Winans, R.E. and Pugmire, R. J., 2008, High pressure pair distribution function studies of Green River oil shale. The journal of Physical Chemistry C, 112, 9980-9982. https://doi.org/10.1021/jp803900s
- Ortega-Castro, J., Hernandez-Haro, N., Timon, V., Sainz-Diaz, C.I. and Hernandez-Laguna, A., 2010, High-pressure behavior of 2M1 muscovite. American Mineralogist, 95, 249-259. https://doi.org/10.2138/am.2010.3035
- Welch, M.D. and Crichton, W.A., 2010, Pressure-induced transformations in kaolinite. American Mineralogist, 95, 651-654. https://doi.org/10.2138/am.2010.3408
- Cheng, H., Liu, Q., Yang, J., Ma, S. and Frost, R.L., 2012, The thermal behavior of kaolinite intercalation complexes-A review. Thermochimica Acta, 545, 1-13. https://doi.org/10.1016/j.tca.2012.04.005
- Angel, R.J., Alvaro, M. and Gonzalez-Platas, J., 2014, Eos-Fit7c and a Fortran module (library) for equation of state calculations. Zeitschrift Für Kristallographie - Crystalline Materials, 229, 405-419. https://doi.org/10.1515/zkri-2013-1711
- Prescher, C. and Prakapenka, V.B., 2015, DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223-230. https://doi.org/10.1080/08957959.2015.1059835
- Hwang, H., Seoung, D., Lee, Y., Liu, Z., Liermann, H.P., Cynn, H., Vogt, T., Kao, C.C., and Mao, H.K., 2017, A role for subducted super-hydrated kaolinite in Earth's deep water cycle. Nature Geoscience, 10, 947-953. https://doi.org/10.1038/s41561-017-0008-1
- Ebert, M., Kowitz, A., Schmitt, R.T., Reimold, W.U., Mansfeld, U. and Langenhorst, F., 2018, Localized shockinduced melting of sandstone at low shock pressures (<17.5 GPa): An experimental study. Meteoritics & Planetary Science, 53, 1633-1643. https://doi.org/10.1111/maps.12948