DOI QR코드

DOI QR Code

An Application Method and Effect Analysis of the DBR(Drum-Buffer-Rope) Method Under the Re-entrant Process

재투입공정 하에서 DBR 기법 적용 방안 및 효과분석

  • Received : 2020.02.18
  • Accepted : 2020.02.22
  • Published : 2020.03.31

Abstract

Many researchers have recommended that DBR scheduling would be an efficient method to maintain the balance of their workload among many processes in the general flow shop. However, as product variety has increased in recent years, the process has become more complex and requires the re-entrance of raw materials and work in process. The re-entrant line has known for the complex manufacturing process that raw materials are repeatedly processed on the same machine. This study reviews the applicability of DBR against the re-entrant manufacturing line due to the distinguishing characteristics and the higher complexity caused by multiple visits of a job into the identical process. In order to apply the DBR method to the re-entrant process, the main idea is to reconstruct re-entrant process into a virtual flow process(loop) that has a single bottleneck. This study discusses the following two questions. First, DBR is also superior to traditional scheduling methods against re-entrant manufacturing line. And how we structure and detect the system bottleneck (or sub-bottleneck) through drum-buffer-rope concepts. To answer the above questions, we experimented and analyzed the effects of the applicability of DBR under the general re-entrant process model(TRC, Technology Research Center). As a result, we have identified a balance between loops for cycle time and work in process.

DBR(Drum-Buffer-Rope)은 하나의 병목공정이 존재하는 생산라인을 드럼, 버퍼 그리고 로프로 구성하여 제약설비인 병목공정을 중심으로 효과적인 스케줄링을 수립하는 데 좋은 전략으로 알려져 있다. 하지만 최근 제품의 다양성이 증가되면서 공정의 복잡성이 높아지고, 자재 및 중간재의 재투입을 요구하는 공정이 많아지고 있다. 재투입 공정은 원자재가 완제품으로 생산될 때까지 동일한 설비에서 반복적으로 작업처리가 되어야 하므로 복잡한 작업환경을 가지게 된다. 본 연구는 기존의 흐름공정에서 우수한 성능을 보인 DBR 기반의 스케줄링 방법이 재투입이 있는 공정에서도 효과적으로 적용 가능한지 여부와 이를 위해서 추가적으로 검토되어야 할 전략들을 다루었다. 본 연구의 핵심은 재투입 공정에 DBR 방법을 적용하기 위하여 재투입 공정을 여러 개로 쪼개어 하나의 병목공정을 갖는 임의의 흐름공정(루프)으로 재구성한다는 점이다. 이러한 구조를 기반으로 본 연구에서는 두 가지 의사결정에 초점을 맞추어 생산 스케줄링 전략을 구성하였다. 첫째, 흐름공정마다 적정 수준의 재고수준과 안정적 생산성을 유지하기 위해 자재 투입시점과 적절한 투입량을 결정한다. 둘째는 각 공정별 상이한 작업 우선순위를 결정하는 방법이다. 본 연구는 실험을 위해 HP사의 TRC(Technology Research Center) 공정에 대한 시뮬레이션 모델을 설계하였고, DBR 기반 루프 스케줄링을 적용한 결과, cycle time의 감소 및 재공품재고의 루프 간 균형을 유지하는 것을 확인하였다.

Keywords

References

  1. Cao, Z., Peng, Y., & Wang, Y. (2011, August). A drum-buffer-rope based scheduling method for semiconductor manufacturing system. In 2011 IEEE International Conference on Automation Science and Engineering (pp.120-125). IEEE.
  2. Chen, J. C., Chen, C. W., Tai, C. Y., & Tyan, J. C. (2004). Dynamic state-dependent dispatching for wafer fabrication. International Journal of Production Research, 42(21), 4547-4562. https://doi.org/10.1080/00207540410001721736
  3. Chen, J. S., Pan, J. C. H., & Wu, C. K. (2008). Hybrid tabu search for re-entrant permutation flow-shop scheduling problem. Expert Systems with Applications, 34(3), 1924-1930. https://doi.org/10.1016/j.eswa.2007.02.027
  4. Choi, S. W., & Kim, Y. D. (2009). Minimizing total tardiness on a two-machine re-entrant flowshop. European Journal of Operational Research, 199(2), 375-384. https://doi.org/10.1016/j.ejor.2008.11.037
  5. Danping, L., & Lee, C. K. (2011). A review of the research methodology for the re-entrant scheduling problem. International Journal of Production Research, 49(8), 2221-2242. https://doi.org/10.1080/00207541003720350
  6. wang, H., & Sun, J. U. (1998). Production sequencing problem with re-entrant work flows and sequence dependent setup times. International Journal of Production Research, 36(9), 2435-2450. https://doi.org/10.1080/002075498192616
  7. Hwang, Y. J., Huang, C. L., & Li, R. K. (2011). Using simplified drum-buffer-rope to rapidly improve operational performance: A case study in China. Production and Inventory Management Journal, 47 (1), 80.
  8. Jain, V., Swarnkar, R., & Tiwari, M. K. (2003). Modelling and analysis of wafer fabrication scheduling via generalized stochastic Petri net and simulated annealing. International Journal of Production Research, 41(15), 3501-3527. https://doi.org/10.1080/0020754031000118152
  9. Land, A. H., & Doig, A. G. (1998). An Automatic Method of Solving Discrete Programming Problems, Econometrica.
  10. Little, J. D. (1961). A proof for the queuing formula: L= $\lambda$ W. Operations research, 9(3), 383-387. https://doi.org/10.1287/opre.9.3.383
  11. Liu, C. H. (2010). A genetic algorithm based approach for scheduling of jobs containing multiple orders in a three-machine flowshop. International Journal of Production Research, 48(15), 4379-4396. https://doi.org/10.1080/00207540902933163
  12. Narahari, Y., & Khan, L. M. (1996). Performance analysis of scheduling policies in re-entrant manufacturing systems. Computers & operations research, 23 (1), 37-51. https://doi.org/10.1016/0305-0548(95)00003-5
  13. Nawaz, M., Enscore Jr, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flowshop sequencing problem. Omega, 11(1), 91-95. https://doi.org/10.1016/0305-0483(83)90088-9
  14. Odrey, N. G., Green, J. D., & Appello, A. (2001). A generalized Petri net modeling approach for the control of re-entrant flow semiconductor wafer fabrication. Robotics and Computer-Integrated Manufacturing, 17(1-2), 5-11. https://doi.org/10.1016/S0736-5845(00)00031-4
  15. Park, Y., Kim, S., & Jun, C. H. (2002). Mean value analysis of re-entrant line with batch machines and multi-class jobs. Computers & Operations Research, 29(8), 1009-1024. https://doi.org/10.1016/S0305-0548(00)00099-X
  16. Qiao, F., & Wu, Q. (2013). Layered Drum-Buffer-Rope-Based scheduling of reentrant manufacturing systems. IEEE Transactions on Semiconductor Manufacturing, 26(2), 178-187. https://doi.org/10.1109/TSM.2013.2248763
  17. Zhang, J., Zhai, W., &Yan, J. (2007). Multiagent-based modeling for re-entrant manufacturing system. International journal of production research, 45 (13), 3017-3036. https://doi.org/10.1080/00207540600810093
  18. Zhang, H., Jiang, Z., & Guo, C. (2009). Simulationbased optimization of dispatching rules for semiconductor wafer fabrication system scheduling by the response surface methodology. The International Journal of Advanced Manufacturing Technology, 41(1-2), 110-121. https://doi.org/10.1007/s00170-008-1462-0