DOI QR코드

DOI QR Code

Expression Patterns of Transposable Elements in Magnaporthe oryzae under Diverse Developmental and Environmental Conditions

  • Chung, Hyunjung (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kang, Seogchan (Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University) ;
  • Lee, Yong-Hwan (Department of Agricultural Biotechnology, Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University) ;
  • Park, Sook-Young (Department of Plant Medicine, Sunchon National University)
  • Received : 2020.03.17
  • Accepted : 2020.03.29
  • Published : 2020.03.31

Abstract

The genome of the rice blast fungus Magnaporthe oryzae contains several types of transposable elements (TEs), and some TEs cause genetic variation that allows M. oryzae to evade host detection. We studied how five abundant TEs in rice pathogens, Pot3, Pot2, MAGGY, Line-like element (MGL) and Mg-SINE, are expressed under diverse conditions related to growth, development, and stress. Expression of Pot3 and Pot2 was activated in germinated conidia and mycelia treated with tricyclazole. Retrotransposon MAGGY was highly expressed in appressoria and tricyclazole-treated mycelia. MAGGY and Pot2 were also activated during the early and late stages of perithecia development. MGL was up-regulated in conidia and during conidial germination but not during appressorium formation. No noticeable expression of Mg-SINE was observed under most conditions. Our results should help investigate if and how condition-specific expressions of some TEs contribute to the biology and evolution of M. oryzae.

Keywords

References

  1. Bradshaw, V. A. and McEntee, K. 1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol. Gen. Genet. 218: 465-474. https://doi.org/10.1007/BF00332411
  2. Daboussi, M. J. and Capy, P. 2003. Transposable elements in filamentous fungi. Annu. Rev. Microbiol. 57: 275-299. https://doi.org/10.1146/annurev.micro.57.030502.091029
  3. Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J. et al. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434: 980-986. https://doi.org/10.1038/nature03449
  4. Eto, Y., Ikeda, K., Chuma, I., Kataoka, T., Kuroda, S., Kikuchi, N. et al. 2001. Comparative analyses of the distribution of various transposable elements in Pyricularia and their activity during and after the sexual cycle. Mol. Gen. Genet. 264: 565-577. https://doi.org/10.1007/s004380000343
  5. Farman, M. L., Tosa, Y., Nitta, N. and Leong, S. A. 1996. MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea. Mol. Gen. Genet. 251: 665-674.
  6. Hamer, J. E., Farrall, L., Orbach, M. J., Valent, B. and Chumley, F. G. 1989. Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proc. Natl. Acad. Sci. U. S. A. 86: 9981-9985. https://doi.org/10.1073/pnas.86.24.9981
  7. Ikeda, K., Nakayashiki, H., Takagi, M., Tosa, Y. and Mayama, S. 2001. Heat shock, copper sulfate and oxidative stress activate the retrotransposon MAGGY resident in the plant pathogenic fungus Magnaporthe grisea. Mol. Genet. Genomics 266: 318-325. https://doi.org/10.1007/s004380100560
  8. Jeon, J., Park, S.-Y., Chi, M.-H., Choi, J., Park, J., Rho, H.-S. et al. 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet. 39: 561-565. https://doi.org/10.1038/ng2002
  9. Kachroo, P., Leong, S. A. and Chattoo, B. B. 1995. Mg-SINE: a short interspersed nuclear element from the rice blast fungus, Magnaporthe grisea. Proc. Natl. Acad. Sci. U. S. A. 92: 11125-11129. https://doi.org/10.1073/pnas.92.24.11125
  10. Kang, S. 2001. Organization and distribution pattern of MGLR-3, a novel retrotransposon in the rice blast fungus Magnaporthe grisea. Fungal Genet. Biol. 32: 11-19. https://doi.org/10.1006/fgbi.2000.1246
  11. Kang, S., Lebrun, M. H., Farrall, L. and Valent, B. 2001. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol. Plant-Microbe Interact. 14: 671-674. https://doi.org/10.1094/MPMI.2001.14.5.671
  12. Kang, S. and Lee, Y.-H. 2000. Population structure and race variation of the rice blast fungus. Plant Pathol. J. 16: 1-8. https://doi.org/10.3923/ppj.2017.1.11
  13. Mansour, A. 2007. Epigenetic activation of genomic retrotransposons. J. Cell Mol. Biol. 6: 99-107.
  14. Mhiri, C., Morel, J. B., Vernhettes, S., Casacuberta, J. M., Lucas, H. and Grandbastien, M. A. 1997. The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol. Biol. 33: 257-266. https://doi.org/10.1023/A:1005727132202
  15. Nishimura, M., Hayashi, N., Jwa, N. S., Lau, G. W., Hamer, J. E. and Hasebe, A. 2000. Insertion of the LINE retrotransposon MGL causes a conidiophore pattern mutation in Magnaporthe grisea. Mol. Plant-Microbe Interact. 13: 892-894. https://doi.org/10.1094/MPMI.2000.13.8.892
  16. Park, S.-Y., Milgroom, M. G., Han, S.-S., Kang, S. and Lee, Y.-H. 2003. Diversity of pathotypes and DNA fingerprint haplotypes in populations of Magnaporthe grisea in Korea over two decades. Phytopathology 93: 1378-1385. https://doi.org/10.1094/PHYTO.2003.93.11.1378
  17. Park, S.-Y., Milgroom, M. G., Han, S. S., Kang, S. and Lee, Y.-H. 2008. Genetic differentiation of Magnaporthe oryzae populations from scouting plots and commercial rice fields in Korea. Phytopathology 98: 436-442. https://doi.org/10.1094/PHYTO-98-4-0436
  18. Rolfe, M., Spanos, A. and Banks, G. 1986. Induction of yeast Ty element transcription by ultraviolet light. Nature 319: 339-340. https://doi.org/10.1038/319339a0
  19. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning: a Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 1546 pp.
  20. Schmidt, A., Schwarz, R. T. and Gerold, P. 1998. Plasmodium falciparum: asexual erythrocytic stages synthesize two structurally distinct free and protein-bound glycosylphosphatidylinositols in a maturation-dependent manner. Exp. Parasitol. 88: 95-102. https://doi.org/10.1006/expr.1998.4241
  21. Seidl, M. F. and Thomma, B. P. H. J. 2017. Transposable elements direct the coevolution between plants and microbes. Trends Genet. 33: 842-851. https://doi.org/10.1016/j.tig.2017.07.003
  22. Talbot, N. J., McCafferty, H. R. K., Ma, M., Moore, K. and Hamer, J. E. 1997. Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression. Physiol. Mol. Plant Pathol. 50: 179-195. https://doi.org/10.1006/pmpp.1997.0081
  23. Teng, S. C., Kim, B. and Gabriel, A. 1996. Retrotransposon reversetranscriptase- mediated repair of chromosomal breaks. Nature 383: 641-644. https://doi.org/10.1038/383641a0
  24. Tosa, Y., Nakayashiki, H., Hyodo, H., Mayama, S., Kato, H. and Leong, S. A. 1995. Distribution of retrotransposon MAGGY in Pyricularia species. Ann. Phytopathol. Soc. Jpn. 61: 549-554. https://doi.org/10.3186/jjphytopath.61.549
  25. Walbot, V. 1999. UV-B damage amplified by transposons in maize. Nature 397: 398-399. https://doi.org/10.1038/17043
  26. Zhou, E., Jia, Y., Singh, P., Correll, J. C. and Lee, F. N. 2007. Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet. Biol. 44: 1024-1034. https://doi.org/10.1016/j.fgb.2007.02.003