DOI QR코드

DOI QR Code

Evaluation of Adhesion Property of Epoxy Adhesive with Different Surface Roughness of GFRC

유리섬유강화 복합재료의 표면거칠기에 따른 에폭시 접착제의 접착강도 평가

  • Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Lee, Sang-Il (Institute of Offshore Wind Energy, Kunsan National University) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • 김종현 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소) ;
  • 신평수 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소) ;
  • 이상일 (군산대학교 해상풍력연구원) ;
  • 박종만 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소)
  • Received : 2020.01.29
  • Accepted : 2020.02.28
  • Published : 2020.03.31

Abstract

Adhesion property of epoxy adhesive was evaluated with different surface roughness of glass fiber reinforced composite (GFRC) and optimized condition of surface roughness was confirmed. Different sizes of alumina (Al2O3) particles were blasted to GFRC to control surface roughness of GFRC using sand blasting method. The surface roughness was measured and quantified via surface roughness tester. Contact angle was measured using four types of different solvents. Surface energies and work of adhesion between epoxy adhesive and GFRCs were calculated with different surface roughness of GFRC. Adhesion property between epoxy adhesive and GFRCs was evaluated using single lap shear test and adhesion property increased with surface roughness of GFRC. The fracture surface of GFRCs was observed to evaluate adhesion property. Finally, the optimized roughness condition of GFRCs was confirmed.

유리섬유강화 복합재료 (GFRC)의 표면거칠기에 따른 에폭시 접착제의 접착강도를 평가하였고 최적의 표면거칠기를 선정하였다. 서로 다른 입자크기의 알루미나 (Al2O3) 입자를 GFRC의 표면에 분사하였고 이를 통하여 서로 다른 표면거칠기를 부여하였다. 표면거칠기를 정량화 하였고 표면거칠기에 따른 표면관찰을 진행하였다. 각 표면거칠기에 따른 접촉각을 측정하였고 이를 통하여 표면에너지를 계산하였으며, 에폭시 접착제와의 접착일을 계산 및 비교하여 접착력을 예측하였다. 단일랩전단 시험을 통해 접착강도를 평가하였고 거칠기에 따라 접착강도가 증가된다는 것을 확인하였다. 박리 후 표면을 관찰해 보았을 때 기지재인 GFRC의 박리 정도가 다른 것을 확인하였고 최종적으로 표면거칠기의 최적조건을 확인할 수 있었다.

Keywords

References

  1. P. Karthigeyan, M.S. Raja, R. Hariharan, R. Karthikeyan, S. Prakash, Materials Today: Proceedings, 4, 3263 (2017). https://doi.org/10.1016/j.matpr.2017.02.212
  2. T. Ishikawa, K. Amaoka, Y. Masubuchi, T. Yamamoto, A. Yamanaka, M. Arai, J. Takahashi, Composites Science and Technology, 155, 221 (2018). https://doi.org/10.1016/j.compscitech.2017.09.015
  3. Y. Boutar, S. Naimi, S. Mezlini, M. B. S. Ali, International Journal of Adhesion & Adhesives, 67, 38 (2016). https://doi.org/10.1016/j.ijadhadh.2015.12.023
  4. A. Gay, F. Lefebvre, S. Bergamo, F. Valiorgue, P. Chalandon, P. Michel, P. Bertrand, International Journal of Fatigue, 83, 127 (2016). https://doi.org/10.1016/j.ijfatigue.2015.10.004
  5. M.N. Avettand-Fenoel, A. Simar, Materials Characterization, 120, 1 (2016). https://doi.org/10.1016/j.matchar.2016.07.010
  6. S. Lathabai, V. Tyagi, D. Ritchie, T. Kearney, B. Finnin, SAE International Journal of Materials and Manufacturing, 4, 589 (2011). https://doi.org/10.4271/2011-01-0477
  7. E. Boldsaikhan, S. Fukada, M. Fujimoto, K. Kamimuki, H. Okada, B. Duncan, P. Bui, M. Yeshiambel, B. Brown, A. Handyside, Friction Stir Welding and Processing IX, 237 (2017).
  8. F. Lambiase, D.C. Ko, Composite Structures, 164, 180 (2017). https://doi.org/10.1016/j.compstruct.2016.12.072
  9. A. Roesner, S. Scheik, A. Olowinsky, A. Gillner, U. Reisgen, M. Schleser, Physics Procedia, 12, 370 (2011). https://doi.org/10.1016/j.phpro.2011.03.146
  10. R.V. Subramanian, The Chemistry of Solid Wood, 207, 323 (1984). https://doi.org/10.1021/ba-1984-0207.ch009
  11. S. Pantelakis, K.I. Tserpes, Science China Physics, Mechanics & Astronomy, 57, 2 (2014). https://doi.org/10.1007/s11433-013-5274-3
  12. S. Budhe, M.D. Banea, S. de Barros, L.F.M. da Silva, International Journal of Adhesion & Adhesives, 72, 30 (2017). https://doi.org/10.1016/j.ijadhadh.2016.10.010
  13. J. Jefferson Andrew, V. Arumugam, C. Santulli, Composite Structures, 143, 63 (2016). https://doi.org/10.1016/j.compstruct.2015.10.037
  14. J. Jefferson Andrew, V. Arumugam, C. Santulli, Composite Structures, 143, 63 (2016). https://doi.org/10.1016/j.compstruct.2015.10.037
  15. J.J.M. Machado, P.M.-R. Gamarra, E.A.S. Marques, Lucas F.M. da Silva, Composites Part B, 138, 243 (2018). https://doi.org/10.1016/j.compositesb.2017.11.038
  16. FS-MMM-A-132B: Federal specification: Adhesives, Heat resistant, Airframe structural, Metal to metal.
  17. Z. Mi, Z. Liu, J. Yao, C. Wang, C. Zhou, D. Wang, X. Zhao, H. Zhou, Y. Zhang, C. Chen, Polymer Degradation and Stability, 151, 80 (2018). https://doi.org/10.1016/j.polymdegradstab.2018.01.006
  18. S. Teixeira de Freitas, M.D. Banea, S. Budhe, and S. de Barros, Composite Structures, 164, 68 (2017). https://doi.org/10.1016/j.compstruct.2016.12.058
  19. S.M.R. Khali, A. Shokuhfar, S.D. Hoseini, M. Bidkhori, S. Khalili, R.K. Mittal International Journal of Adhesion & Adhesives, 28, 436 (2008). https://doi.org/10.1016/j.ijadhadh.2008.04.009
  20. A. Baldan, International Journal of Adhesion & Adhesives, 38, 95 (2012). https://doi.org/10.1016/j.ijadhadh.2012.04.007
  21. O. Coban, E. Akman, M. Ozgur Bora, B. Genc Oztoprak, A. Demir, Polymer Composites, 40, 3611(2019). https://doi.org/10.1002/pc.25224