DOI QR코드

DOI QR Code

Culture characteristics and genetic relationship of morel mushroom (Morchella spp.) isolates from Korea and other countries

곰보버섯 (Morchella spp.) 수집균주의 배양적특성 및 유전적 유연관계

  • Min, Gyeong-Jin (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Park, Hye-sung (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Lee, Eun-ji (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Lee, Chan-Jung (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA)
  • 민경진 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 박혜성 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 이은지 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 이찬중 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과)
  • Received : 2020.02.29
  • Accepted : 2020.03.16
  • Published : 2020.03.31

Abstract

Eight morel mushroom species were collected from Korea and other countries. The culture characteristics, genetic relationships, and beta-glucan content of the strains were analyzed. The mycelia of Morchella species exhibited optimal growth when cultured in dark at 25 ℃ in media with pH 7. The mycelia had a distinctive mycelial scent and characteristically changed color, being white initially, and then turning dark yellow to dark brown as it grew. The mycelia were classified into five types based on morphology. The isolates were identified as Morchella conica, two M. sextelata, M. importuna, M. esculenta, and three M. crassipes, based on ITS-rDNA sequences. PCR polymorphisms were variably produced within Morchella spp. using Universal Fungal Fingerprinting Primers (UFPF) and classified into four groups at the intra and inter species level. The strains, KMCC04971 and KMCC04407, showed the same banding pattern as M. conica and M. sextelata, respectively; however, these results were different from those of ITS analysis. Glucan content analysis by strain showed that the KMCC 04973 strain of M. importuna had the highest alpha- and beta-glucan content, at 16.4 g and 33.1 g per 100 g, respectively.

본 연구는 국내외 수집 균주를 대상으로 균주의 배양적 특성과 유전적 유연관계 및 균주별 함유된 베타글루칸의 함량을 분석하였다. 곰보버섯은 생장온도 25℃, pH 7.0에서 균사 생장이 가장 왕성하였다. 균사는 초기에 백색에서 생장이 진행될수록 진한 노란색을 띠다 진한 갈색으로 변화하는 공통적인 특징을 가지고 있었으며, 곰보버섯만의 고유한 배양적 특징으로 균사가 종에 따라 주기별로 경화되는 특징과 특유 강한 향이 있다는 것을 확인할 수 있었다. 균사 형태는 관찰을 통하여 총 5종류로 분류되었고 이들 균주의 ITS 분석 결과 Morchella conica, M.sextelata, M. importuna, M. esculenta, M. carssipes 등 5종으로 동정되었다. UFPF primer를 이용하여 PCR 다형성을 분석한 결과 ITS 분석 결과와는 다르게 M. conica로 동정된 KMCC04971 균주와 M. sextelata로 동정된 KMCC04407 균주는 동일한 패턴을 보였으며 그 결과 4개의 그룹으로 분류할 수 있었다. 균주별 균사체 베타글루칸 함량 분석 결과 M. importuna인 KMCC04973 균주가 100 g당 알파글루칸 16.4 g을 포함하는 베타글루칸 함량 33.1 g으로 가장 높았다.

Keywords

References

  1. Ali H, Sannai J, Sher H, Rashid A. 2011. Ethnobotanical profile of some plant resources in Malam Jabba valley of Swat, Pakistan. J Med Plant Res 5: 4171-4180.
  2. Alves MJ, Ferreira IC, Dias J, Teixeira V, Martins A, Pintado M. 2012. A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med 78: 1707-1718. https://doi.org/10.1055/s-0032-1315370
  3. Brown GD, Gordon S. 2005. Immune recognition of fungal ${\beta}$‐glucans. Cell Microbiol 7: 471-479. https://doi.org/10.1111/j.1462-5822.2005.00505.x
  4. Buscot F. 1993. Mycelial differentiation of Morchella esculenta in pure culture. Mycol Res 97: 136-140. https://doi.org/10.1016/S0953-7562(09)80234-7
  5. Cha WS, Lee HD, Kim JS. 2004. On the composition of Morchella esculenta fruit body. Kor J Life Sci 1: 82-90.
  6. Chang R. 1996. Functional properties of edible mushrooms. Nutr Rev 54: 91-93.
  7. Chihara G, Hamuro J, Maeda YY, Arai Y, Fukuoka F. 1970. Fractionation and purification of the polysaccharides with masked antitumor activity, especially lentinan from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res 30: 2776-2781.
  8. Cui HL, Chen Y, Wang SS, Kai GQ, Fang YM. 2011. Isolation, partial characterisation and immunomodulatory activities of polysaccharide from Morchella esculenta. J Sci Food Agric 91: 2180-2185. https://doi.org/10.1002/jsfa.4436
  9. Du XH, Zhao Q, Yang ZL, Hansen K, Taskin H, Buyukalaca S, Dewsbury D, Moncalvo JM, Douhan GW, Robert VA, Crous PW, Rehner SA, Rooney AP, Sink S, O'Donnell K. 2012. How well do ITS rDNA sequences differentiate species of true morels (Morchella)? Mycologia 104: 1351-1368. https://doi.org/10.3852/12-056
  10. Fujita H, Oqawa K, Ikuzawa M, Muto S, Matsuki M, Nakajima S, Shimamura M, Toqawa M, Yoshikumi C, Kawai Y. 1988. Effect of PSK, a protein bound polysaccharides from Coriolus versicolor, on drug-metabolizing enzyme in sarcoma-180 bearing and normal mice. Int J Immunopharmacol 10: 445-450. https://doi.org/10.1016/0192-0561(88)90132-4
  11. Gepts P. 1993. The use of molecular and biochemical markers in crop evolution studies. In Hecht M.K., MacIntyre R.J., Clegg M.T. (ed.), Evolutionary Biology, vol. 27, Springer, Boston, MA. 51-94.
  12. Kang HW. 2012. Genetic diversity analysis of fungal species by universal rice primer (URP)-PCR. Kor J Mycol 40: 78-85 https://doi.org/10.4489/KJM.2012.40.2.78
  13. Kellner H, Renker C, Buscot F. 2005. Species diversity within the Morchella esculenta group (Ascomycota: Morchellaceae) in Germany and France. Org Divers Evol 5: 101-107. https://doi.org/10.1016/j.ode.2004.07.001
  14. Kim HK, Lee KH, Cheong JC, Jhune CS, Seok SJ, Jang KY. 2009. Studies on the artificial cultivation of Morchella esculenta in Ascomycetes. J Mushroom 7: 9-21.
  15. Lee SY. 1996. Characterization and production of mushroomderived anticancer polysaccharides. BT NEWS 2: 95-109.
  16. Liu Q, Ma H, Zhang Y, Dong C. 2018. Artificial cultivation of true morels: current state, issues and perspectives. Crit Rev Biotechnol 38: 259-271. https://doi.org/10.1080/07388551.2017.1333082
  17. Nitha B, Meera CR, Janardhanan KK. 2007. Anti-inflammatory and antitumour activities of cultured mycelium of morel mushroom, Morchella esculenta. Curr Sci 92: 235-239.
  18. O'Donnell K, Ward TJ, Robert VARG, Crous PW, Geiser DM, Kang S. 2015. DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica 43: 583-595. https://doi.org/10.1007/s12600-015-0484-z
  19. Philippoussis A, Balis C. 1995. Studies on the morphogenesis of sclerotia and subterranean mycelial network of ascocarps in Morchella species. Sci Cultivation Edible Fungi 14: 847-855.
  20. Rajarathnam S, Shashirekha MNJ, Bano Z. 1998. Biodegradative and biosynthetic capacities of mushrooms: present and future strategies. Crit Rev Biotechnol 18: 91-236. https://doi.org/10.1080/0738-859891224220
  21. Sari M, Prange A, Lelley JI, Hambitzer R. 2017. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem 216: 45-51. https://doi.org/10.1016/j.foodchem.2016.08.010
  22. Singh SK, Kamal S, Tiwari M, Yadav M, Upadhyay RC. 2004. Arbitrary primer based RAPD-a useful genetic marker for species identification in Morels. J Plant Biochem Biotechnol 13: 7-12. https://doi.org/10.1007/BF03263183
  23. Winder RS. 2006. Cultural studies of Morchella elata. Mycol Res 110: 612-623. https://doi.org/10.1016/j.mycres.2006.02.003
  24. Zhang, L, Hu Y, Duan X, Tang T, Shen Y, Hu B, Liu A, Chen H, Li C, Liu, Y. 2018. Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms. Int J Biol Macromol 113: 1-7. https://doi.org/10.1016/j.ijbiomac.2018.02.084