DOI QR코드

DOI QR Code

인공습지 조성 후 환경변화가 잠자리목의 종수 및 개체수에 미치는 영향 파악

Understanding the Impact of Environmental Changes on the Number of Species and Populations of Odonata after Creating a Constructed Wetland

  • 이수동 (경남과학기술대학교 조경학과) ;
  • 배순형 (울산.경남 환경보전협회) ;
  • 이광규 (국립문화재연구소 자연문화재연구실)
  • Lee, Soo-Dong (Dept. of Landscape Architecture, Gyeongnam National University of Science and Technology) ;
  • Bae, Soo-Hyoung (Korean Environmental Preservation Association) ;
  • Lee, Gwang-Gyu (National Research Institute of Cultural Heritage, Natural Cultural Properties Lab.)
  • 투고 : 2020.08.14
  • 심사 : 2020.11.06
  • 발행 : 2020.12.31

초록

인공습지는 조성 후 자연적인 천이 과정으로 인해 육상식물의 비율이 높아지는 등 생물학적 및 물리적인 변화가 진행되는데, 이는 정화 기능 뿐만 아니라 종다양성에도 영향을 미칠 수 있다. 이에 본 연구는 낙동강 매수토지 중 수심, 주변 입지 조건 등을 고려하여 7개의 인공습지를 선정한 후 물리적인 환경 및 생물종의 시계열적인 변화를 모니터링한 결과를 바탕으로 생물다양성에 영향을 미치는 환경요인을 도출하고 관리방안을 제안하고자 하였다. 서식처와 종다양성의 변화 경향을 예측하고자 환경현황과 습지의존종인 잠자리목의 출현 현황을 파악하였다. 수심 0.2~1m 내외로 복원되어 수면이 유지되었던 2012년과 비교하여 2015년에는 식재된 추수식물이 깊은 수심으로 확산되면서 개방 수면의 면적도 줄었다. 잠자리의 종수는 총 54종류가 관찰되었는데 식재한 식물이 확산되었음에도 불구하고 식생, 수면, 초지 등 서식처 다양성이 유지되어 조성 초기와 유사하였다. 하지만, 잠지리의 개체수는 2012년과 비교하여 2015년에 줄었는데, 이는 수면이 축소되면서 수생식물이 드문 곳을 선호하는 실잠자리과에 속하는 종의 개체수가 감소하였기 때문인 것으로 판단되었다. 연도별 습지간 종수 및 개체수의 차이를 분석한 결과 p-value가 각각 2.568e-09, 1.162e-08로 차이는 유의하였다. 개방 수면 감소가 종다양성과 잠자리의 서식밀도에 가장 큰 영향을 미치는 것으로 분석되었는데, 조성 초기에 식재한 갈대, 달뿌리풀, 부들 등 추수식물의 확산이 개방 수면 축소와 잠자리 종수 감소를 초래하므로 개방 수면을 유지하는 관리가 이루어져야 할 것이다.

Constructed wetlands undergo biological and physical changes such as an increase in the proportion of arid plants due to the natural succession process after formation. It can adversely affect not only the purification function but also the habitat of species. As such, this study aims to identify environmental factors affecting biodiversity and propose management plans based on the monitoring results of physical environmental changes and the emergence of species in seven constructed wetlands selected based on the water depth and surrounding conditions among the lands purchased by the Nakdong River basin. We examined the environmental conditions and emergence of the Odonata, which is a wetland-dependent species, to predict the trend of changes in biodiversity and abundance. The results showed that the open water area decreased as the emergent plants spread to the deep water in 2015 compared to 2012 when they were initially restored to a depth of 0.2 to 1 m. While a total of 54 dragonfly species were observed, the habitat diversity, such as vegetation, water surface, and grassland, remained similar to the initial formation of the wetlands despite the expansion of the emergent plants. On the other hand, the number of Agrionidae species, which prefer areas with fewer aquatic plants, decreased between 2012 and 2015 due to the diminished water surface. The p-values of the differences in the number of species and population between wetlands by year were 2.568e-09 and 1.162e-08, respectively, indicating the statistically significant differences. The decrease in open water surface was found to have the greatest effect on the biodiversity and habitat density of dragonflies. The time-series survey of constructed wetlands confirmed that the spread of Phragmites communis, P. japonica, Typha orientalis, etc., caused a decrease in species diversity. It suggests that environmental management to maintain the open water surface area is necessary.

키워드

참고문헌

  1. Bae, S.H. and S.D. Lee(2018) Construction and Management Plan of Constructed Wetland for Promoting Biodiversity. J. People Plants Environ. 21(3): 185-202. https://doi.org/10.11628/kspp.2018.21.3.185
  2. Brix, H.(1997) Do Macrophytes Play a Role in Constructed Treatment Wetlands? Water Science & Technology 35(5): 11-17. https://doi.org/10.1016/S0273-1223(97)00047-4
  3. Clark, T.E. and M.J. Samways(1996) Dragonflies(Odonata) as indicators of biotope quality in the Kruger National Park, South Africa. Journal of Applied Ecology 33(5): 1001-1012. https://doi.org/10.2307/2404681
  4. Craft, C.(2016) Creating and restoring wetlands. Elsevier, MA, USA, 348pp.
  5. Ehrenfeld, J.G.(2000) Evaluating wetlands within an urban context. Ecological Engineering 15(3-4): 253-265. https://doi.org/10.1023/A:1009543920370
  6. Grime, J.P.(1977) Evidence for the existence of three primary strategies in plants and it relevance to ecological and evolutionary theory. American Naturalist 111: 1169-1194. https://doi.org/10.1086/283244
  7. Grimm, N.B., S.H. Faeth, N.E. Golubiewski, C.L. Redman, J. Wu, X. Bai and J.M. Briggs(2008) Global Change and the Ecology of Cities. Science 319: 756-760. https://doi.org/10.1126/science.1150195
  8. Guzy, J.C., E.D. McCoy, A.C. Deyle, S.M. Gonzalez, N. Halstead and H.R. Mushinsky(2012) Urbanization interferes with the use of amphibians as indicators of ecological integrity of wetlands. Journal of Applied Ecology 49: 941-952. https://doi.org/10.1111/j.1365-2664.2012.02172.x
  9. Harper, J.L.(1965) Establishment, aggression, and cohabitation in weedy species. In H.G. Baker and G.L. Stebbins(Eds.), The Genetics of colonizing species. Academic Press, New York, pp. 243-265.
  10. Hsua, C.B., H.L. Hsieh, L. Yang, S.H. Wu, J.S. Chang, S.C. Hsiao, H.C. Su, C.H. Yeh, Y.S. Ho and H.J. Lin(2011) Biodiversity of constructed wetlands for wastewater treatment. Ecological Engineering 37(10): 1533-1545. https://doi.org/10.1016/j.ecoleng.2011.06.002
  11. Innis, S.A., R.J. Naiman and S.R. Elliott(2000) Indicators and assessment methods for measuring the ecological integrity of semi-aquatic terrestrial environments. Hydrobiol. 422/423: 111-131. https://doi.org/10.1023/A:1017033226325
  12. IPCC(2014) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. In T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda and T.G. Troxler(Eds.). Published: IPCC, Switzerland.
  13. Jones, K., Y. Lanthier, P. Van der Voet, E. Van Valkengoed, D. Taylor and D. Fernandez-Prieto(2009) Monitoring and assessment of wetlands using earth observation: The Glob Wetland project. J. Environ. Manag. 90(7): 2154-2169. https://doi.org/10.1016/j.jenvman.2007.07.037
  14. Joyce, C.B.(2014) Ecological consequences and restoration potential of abandoned wet grasslands. Ecological Engineering 66: 91-102. https://doi.org/10.1016/j.ecoleng.2013.05.008
  15. Jung, K.S.(2007) Odonata of Korea. Ilgonyuksa
  16. Kadlec, R.H. and S.D. Wallace(2009) Treatment wetlands(2nd ed.). CRC Press. Taylor & Francis Group. NW, U.S., 348pp.
  17. Kim, H.Y., M.H. Kim, H.K. Choi, D.Y. Lyang, E.J. Shin, K.S. Lee and H.B. Yi(2010) Changes of vegetation structure according to the hydro-seral stages in the east coastal lagoons, Korea. Journal of Wetlands Research 12: 129-144. (in Korean)
  18. Kim, J.S., B.H. Han and J.W. Choi(2009) A Study on the Habitat Characteristics of Odonata according to Wetland Structure in City. Pro. Korean Institute of Landscape Architecture Con. 20: 108-110. (in Korean)
  19. Kim, J.S., S.D. Lee and D.P. Kim(2018) The Relationship between the Dragonfly Diversity and the Environmental Factors in the Juam Wetland. Korean J. Environ. Ecol. 32(1): 66-76. https://doi.org/10.13047/KJEE.2018.32.1.66
  20. Kuki, N. and K. Okubo(2005). Relationship between the Dragonfly Communities and the Environmental Conditions at Paddy Field Areas in the Kamiina district, Nagano Prefecture, Central Japan. Journal of the Japanese Institute of Landscape Architecture 68(5): 579-584. https://doi.org/10.5632/jila.68.579
  21. Lawton, J.H., D.E. Bignell, B. Bolton, G.F. Bloemers, P. Eggleton, P.M. Hammond, M. Hodda, R.D. Holt, T.B. Larsen, N.A. Mawdsley, N.E. Stork, D.S. Srivastava and A.D. Watt(1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forests. Nature 391: 72-75. https://doi.org/10.1038/34166
  22. Lee, S.D.(2019) Proposition of Dragonfly's Appropriate Survey Period Inhabited in Temperate Zone. Korean J. Environ. Ecol. 33(1): 16-27. https://doi.org/10.13047/KJEE.2019.33.1.16
  23. Lutz, P.E. and A.R. Pittman(1970) Some Ecological Factors Influencing a Community of Adult Odonata. Ecology 51(2): 279-284. https://doi.org/10.2307/1933664
  24. Mackintosh, T.J., J.A. Davis and R.M. Thompson(2015) The influence of urbanisation on macroinvertebrate biodiversity in constructed stormwater wetlands. Science of the Total Environment 536(2015): 527-537. https://doi.org/10.1016/j.scitotenv.2015.07.066
  25. Ministry of Environment(2012) Waterside ecological network planning report for the local community. Sejong, Korea: Author.
  26. Mitsch, W.J. and J.G. Gosselink(2007) Wetlands. John Wiley and Sons, Hoboken, NJ, USA, 582pp.
  27. Moat, G., B. Simpson, P. Ghanem, J. Kandasamy and S. Vigneswaran(2008) Constructed wetlands: Classification, Functions and Treatment. 1-26. In J. Kandasamy and S. Vigneswaran(Eds.), Constructed Wetlands. Nova Science Publishers, Inc., New York.
  28. Moreno-Mateos, D., M.E. Power, F.A. Comin and R. Yockteng(2012) Structural and functional loss in restored wetland ecosystems. PLoS Biol 10(1): e1001247. https://doi.org/10.1371/journal.pbio.1001247
  29. Oppel, S.(2005) Habitat associations of an Odonata community in a lower montane rainforest in Papua New Guinea. International Journal of Odonatology 8(2): 243-257. https://doi.org/10.1080/13887890.2005.9748256
  30. Rehman, F., A. Pervez, B.N. Khattak and R. Ahmad(2017) Constructed Wetlands: Perspectives of the Oxygen Released in the Rhizosphere of Macrophytes. CSAWAC 45(1): 1600054. https://doi.org/10.1002/clen.201600054
  31. Scholz, M., R. Harrington, P. Carroll and A. Mustafa(2007) The integrated constructed wetlands (ICW) concept. Wetlands 27(2): 337-354. https://doi.org/10.1672/0277-5212(2007)27[337:ticwic]2.0.co;2
  32. Schowalter, T.D.(2006) Insect ecology: An ecosystem approach. MA, USA, ELSEVIER.
  33. Semeraro, T., C. Giannuzzi, L. Beccarisi, R. Aretano, A. De Marco, M.R. Pasimeni, G. Zurlini and I. Petrosillo(2015) A constructed treatment wetland as an opportunity to enhance biodiversity and ecosystem services. Ecological Engineering 82(2015): 517-526. https://doi.org/10.1016/j.ecoleng.2015.05.042
  34. Smith, M.D., C.A. Roheim, L.B. Crowder, B.S. Halpern, M. Turnipseed, J.L. Anderson, F. Asche, L. Bourillon, A.G. Guttormsen, A. Khan, L.A. Liguori, A. McNevin, M.I. O'Corner, D. Squires, P. Tyedmers, C. Browstein, K. Carden, D.H. Klinger, R. Sagarin and K.A. Selkoe(2010) Sustainability and global seafood. Science 327: 784-786. https://doi.org/10.1126/science.1185345
  35. Son, D., H. Lee, E.J. Lee, K.H. Cho and D. Kwon(2015) Flora and Vegetation Structure in a 15-Year-Old Artificial Wetland. Ecology and Resilient Infrastructure 2(1): 54-63. http://dx.doi.org/10.17820/eri.2015.2.1.054
  36. Triplehorn, C.A. and N.F. Johnson(2005) Borror and Delong's introduction to the study of insects. Belmont, CA, Thomson Brooks/Cole.
  37. Turner, R.E. and R.R. Lewis III(1997) Hydrologic restoration of coastal wetlands. Wetlands Ecology and Management 4: 65-72. https://doi.org/10.1007/BF01876229
  38. Ubukata, H. and Y. Kurauchi(2007) Assessment of lake environment using dragonfly assemblage: A case study at Lake Takkobu, Kushiro Marsh, northern Japan. Japanese Journal of Limnology 68: 131-144. https://doi.org/10.3739/rikusui.68.131
  39. Verhoeven, J.T.A., B. Beltman, R. Bobbink and D.F. Whigham(2006) Wetlands and natural resource management. Springer, M.D. USA. 347pp.
  40. Vymazal, J.(2010) Constructed Wetlands for Wastewater Treatment. Water 2010(2): 530-549. https://doi.org/10.3390/w2030530
  41. Vymazal, J., M. Greenway, K. Tonderski, H. Brix and U. Mander(2006) Constructed wetlands for wastewater treatment. Ecological Studies 190: 69-96. https://doi.org/10.1007/978-3-540-33187-2_5
  42. Wang, X., B. Luo, L. Wang, Y. Zhao, Q. Wang, D. Li, B. Gu, Y. Min, S.X. Chang, Y. Gea and J. Chang(2020) Plant diversity improves the effluent quality and stability of floating constructed wetlands under increased ammonium/nitrate ratio in influent. Journal of Environmental Management 266(2020): 110607. https://doi.org/10.1016/j.jenvman.2020.110607
  43. Weller, M.W.(1999) Wetland birds-Habitat resources and conservation implications. Cambridge University Press, Cambridge, UK.
  44. Wetzel, R.G.(2001) Fundamental processes within natural and constructed wetland ecosystems: Short-term versus long-term objectives. Water Science and Technology 44(11-12): 1-8. https://doi.org/10.2166/wst.2001.0803
  45. Zedler, J.B.(2003) Wetlands at your service: Reducing impacts of agriculture at the watershed scale. Frontiers in Ecology and the Environment 1: 65-72. https://doi.org/10.1890/1540-9295(2003)001[0065:WAYSRI]2.0.CO;2
  46. Zhang, C., L. Wen, Y. Wang, C. Liu, Y. Zhou and G. Lei(2020) Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value. Sustainability 12(4): 1442. https://doi.org/10.3390/su12041442