• Title/Summary/Keyword: WETLAND ENVIRONMENT CHANGE

Search Result 90, Processing Time 0.035 seconds

Effects of Submerged Plants on Water Environment and Nutrient Reduction in a Wetland (습지의 수환경과 영양물질에 미치는 침수식물의 영향)

  • Yi, Yong min;Lee, Suk Mo;Sung, Kijune
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Submerged plants whose most of vegetative mass are below the water surface can have great effects on wetland biogeochemistry and water purification through their photosynthesis and nutrient uptake processes. In this study, change of dissolved oxygen concentration and pH as well as nutrient removal capacity of the submerged plant dominant wetland were investigated using wetland mesocosm experiments. Obvious periodic DO and pH fluctuation was observed due to photosynthetic activities of the submerged plants. It implies that the submerged plants can provide periodic or sequential changes of oxic and anoxic conditions that affect nitrification and denitrification processes and contribute permanent nitrogen removal in the wetland system. The pH changes in the wetland mesocosm suggested that submerged plant could also play an important role as a temporary $CO_2$ storage. Higher nutrient removal efficiency was observed in the submerged plant dominant wetland mesocosm. The removal efficiencies under experimental conditions were 38.89, 84.70, 91.21, 70.76, 75.30% of TN, DIN, $NH_4-N$, TP, $PO_4-P$ in the wetland mesocosm, while those were 26.11, 57.34, 63.87, 28.19, 55.15% in the control treatment, respectively.

Beijing's Wetland Environment Research Based On RS Technology

  • Gong, Hui-Li;Zhao, Wen-Ji;Zhang, Zhi-Feng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1304-1306
    • /
    • 2003
  • The absolute area of wetland accounts for 0.3% of the whole Beijing. We have studied the current environmental situations of Beijing's wetland and the changes in the key wetland supported by Remote Sensing(RS) technology. The result shows that the areas of wetland are reducing year by year and the quality of ecological environment is dropping year by year. At last, we analyze the factors that influence the change of wetland and propose some constructive suggestions according to current problems existing in Beijing's wetland.

  • PDF

Application of Hybrid Constructed Wetland System for Stream Water Quality Improvement (오염하천 수질개선을 위한 Hybrid형 인공습지의 적용)

  • Kim, Seung-jun;Choi, Yong-su;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.209-214
    • /
    • 2006
  • The purpose of this study is to improve the stream water quality by the experimental hybrid constructed wetland system. It consisted of the water layer, sand bed planted reeds, irises and roses, gravel bed, yellow-soil media bed and a flow shifter (FS) which can reverse top and bottom flow in the middle of the wetland. The organic compounds and nitrogen removal efficiencies varied with the seasons, namely temperature change. In summer, the mean efficiencies of COD and TN in the outflow from this wetland system were 63.4 and 48.0% and shown the highest, respectively, whereas, the suspended solids and phosphorus removal efficiencies seemed to be less affected by temperature. As a result of inspecting the decreasing trend of pollutants, nitrification-denitrification in the wetland was the major removal mechanism for nitrogen, the nitrogen reduction was especially enhanced by the application of a FS in the wetland, and phosphorus reduction was mainly occurred as a consequence of adsorption of the yellow-soil media.

Application of the Carabid Beetles as Ecological Indicator Species for Wetland Characterization and Monitoring in Busan and Gyeongsangnam-do (습지지표종으로서 딱정벌레류를 이용한 부산, 경남 주요 습지의 특성 및 변화 관찰)

  • Do, Yu-Do;Moon, Tae-Young;Joo, Gea-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2007
  • Investigation of carabid beetles as on ecological indicator species for wetland characterization and monitoring was conducted in three types of wetlands such as emergent wetland, forested wetland, and estuary, During the investigation period, twenty-eight species belonging to twenty-two genera and three families(Carabidae, Harpalidae, Brachinidae) were identified. The diversity of carabid beetles at riverine wetland such as Woopo (H'=1.18) and Hwapo-neup (H'=1.08) were higher than in the forested wetland (H'=1.03) and estuarine (H'=0.91). Species compositions in each wetland were significantly different(${\chi}^2=1716.8$, P<0.01). Riverine wetlands differed significantly from the forested wetland. Indicator species for the wetland chose with indicator species analysis were reacted sensitively on the parameter such as soil composition, moisture of soil, and environmental change. Thus, it was consequently suggested that these indicator species may be applied for wetland characterization and monitoring of the wetland ecosystem.

Temporal and Spatial Change in Microbial Diversity in New-developed Wetland Soil Covered by Tamarix chinesis Community in Chinese Yellow River Delta

  • Chen Weifeng;Ann Seoung-Won;Kim Hong-Nam;Shi Yanxi;Mi Qinghua
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.367-371
    • /
    • 2005
  • Soil samples were collected from new-developed wetland soil ecosystem of Tamarix chinesis plantation in Chinese Yellow River Delta in different months of 2003. Soil characteristics, temporal change and spatial distribution of microbial community composition and their relationship with nitrogen turnover and circling were investigated in order to analyze and characterize the role of microbial diversity and functioning in the specific soil ecosystem. The result showed that the total population of microbial community in the studied soil was considerably low, compared with common natural ecosystem. The amount of microorganism followed as the order: bacteria> actinomycetes>fungi. Amount of actinomycetes were higher by far than that of fungi. Microbial population remarkably varied in different months. Microbial population of three species in top horizon was corrected to that in deep horizon. Obvious rhizosphere effect was observed and microbial population was significantly higher in rhizosphere than other soils due to vegetation growth, root exudation, and cumulative dead fine roots. Our results demonstrate that microbial diversity is low, while is dominated by specific community in the wetland ecosystem of Tamarix chinesi.

A Prediction and Distribution of Wetland Based on an E-GIS (E-GIS 기반의 습지분포 및 규모예측)

  • Jang, Yong Gu;Kim, Sang Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1011-1017
    • /
    • 2006
  • It is so sensitive that the wetland ecosystem very weak in artificial interference and environment change. wetlands are a transitional zone between aquatic and terrestrial ecosystems. This natural property is important to people and life. It is necessary to preservation and protection of the wetland with a countermeasure. we really need to Environment-GIS (E-GIS) and digital map which is included correct position, attribute data and range of the wetland. In this study, we take priority of making a database of wetland management. Moreover, we standardize a digital map production of wetland in our research and we improve accuracy of control survey using GPS surveying. The main purpose of this study is to suggest a pre-estimated wetland that have not yet been discovered. by analysing terrain, geological feature, a geographical distribution of plants and animals using GIS.

Changes in vegetation and flora of abandoned paddy terraces in responses to drawdown

  • Hong, Mun Gi;Nam, Bo Eun;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.219-225
    • /
    • 2019
  • In order to assess the impacts of drawdown for land-use change on a Sphagnum-marsh, we compared the vegetation and flora of the wetland before and after the drawdown with focusing on the population of Sphagnum palustre L. Remarkable changes in the coverage of S. palustre and the major vegetational components of the wetland were observed. The coverage of S. palustre markedly decreased by about 75% (from approx. 247 ㎥ in 2011 to approx. 62 ㎥ in 2015) after the drawdown. Tree species such as Salix spp. extended (from about 70% to about 83% in the total coverage of the wetland), whereas herbaceous species shrunk after the drawdown. Upland-inhabiting species such as obligate plants for uplands (OBU) increased, whereas wetland-inhabiting species such as facultative plants for wetlands (FACW) and OBW decreased in terms of vegetational coverage. The total number of plant species decreased from 70 species to 62 species after the drawdown, including the disappearance of some wetland-inhabiting species from the wetland. We suggest that the attention for further studies on the abandoned paddy terraces (APTs) and effort for the management and conservation of APTs and APT-inhabiting species that are vulnerable to human-induced disturbances have to be paid more.

Analysis of Seasonal Water Quality Variation of a Natural Wetland in the Nakdong River Basin (낙동강 수계 자연습지의 계절별 수질변화특성 분석)

  • Kim, Young Ryun;Lee, Kwang Sup;Lee, Suk Mo;Kang, Daeseok;Sung, Kijune
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.713-719
    • /
    • 2009
  • A natural wetland in the Nakdong River basin which effectively removes non-point source pollutants was investigated for 2 years to understand wetland topography, vegetation types, and water quality characteristics. The water depth of the natural wetland was in the range of 0.5~1.9 m which is suitable for the growth of non-emergent hydrophytes. The wetland has a high length to width ratio (3.3:1) and a relatively large wetland to watershed area ratio (0.057). A broad-crested weir at the outlet increases the retention time of the wetland whose hydrology is mainly dependent on storm events. The concentrations of dissolved oxygen in the growing season and the winter season showed anoxic and oxic conditions, respectively. Diurnal variations of DO and pH in the growing season were also observed due to weather change and submerged plants. COD and TP concentrations were low in the winter season due to low inflow rate and increased retention time. Increased TP concentrations in the spring season were caused by degradation of dead wetland plants. Nitrogen in the wetland was mostly in organic nitrogen form (>75%). During the growing season, ammonium concentration was high but nitrate nitrogen concentration was low, possibly due to anoxic and low pH conditions which are adverse conditions for ammonificaiton and nitrification. The results of this study can be used as preliminary data for design, operation, monitoring and management of a constructed wetland which is designed to treat diffuse pollutants in the Nakdong river watershed.

A Study on Surface Landscape Change and Sedimentary Environment of the Dongcheon Estuary through Aerial Photographs and Sediment Analysis (항공사진 및 퇴적물 분석을 통한 순천 동천하구의 지표경관 변화 및 퇴적환경 연구)

  • Lee, Ye-Seul;Lim, Jeong-Cheol;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.35-50
    • /
    • 2021
  • In this study, we analyzed the changes in the topographical landscape and the sedimentary environment to evaluate the ecological value of the Dongcheon Estuary and protect the wetland, and presented the conservation management method of the Dongcheon Estuary. Based on the result of topographical landscape analysis, agricultural land tended to decrease continuously, and artificial structures gradually increased. Moreover, in sediment analysis, the Dongcheon Estuary showed both the characteristics of river sediments and coastal sediments, and in some areas problems such as acidification and nutritional imbalance appeared. Therefore, in order to protect and manage the Dongcheon Estuary with high ecological value, it is necessary to limit the development around micro topography and minimize the artificial damage in the Dongcheon Estuary. In addition, efforts such as securing facilities for reducing pollutants and freshwater wetlands for pollutants, that flow in from nonpoint pollutants are required.

Change of Wetland Microbial Activities after Creation of Constructed Wetlands (인공습지 조성 후 습지미생물활성도 변화에 관한 연구)

  • Lee, Ja-Yeon;Kim, Bo-Ra;Park, So-Young;Sung, Ki-June
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • To understand the initial changes in the microbial activities of wetland soil after construction, dehydrogenase activity (DHA) and denitrification potential (DNP) of soil from 1 natural wetland and 2 newly constructed wetlands were monitored. Soil samples were collected from the Daepyung marsh as a natural wetland, a treatment wetland in the West Nakdong River, and an experimental wetland in the Pukyong National University, Busan. The results showed that the DHA of the natural wetland soil was 6.1 times higher than that of the experimental wetland and similar to that of the treatment wetland 6 months after wetland construction (fall). Few differences were observed in the DNP between the soil samples from the natural wetland and 2 constructed wetlands four months after wetland construction (summer). However, 6 months after the construction (fall), the DNP of the soil samples from the natural wetland was 12.9 times and 1.8 times higher than that of the experimental wetland and the treatment wetland, respectively. These results suggested that the presence of organic matter as a carbon source in the wetland soil affects the DHA of wetland soil. Seasonal variation of wetland environment, acclimation time under anaerobic or anoxic wetland conditions, and the presence of carbon source also affect the DNP of the wetland soil. The results imply that the newly constructed wetland requires some period of time for having the better contaminant removal performance through biogeochemical processes. Therefore, those microbial activities and related indicators could be considered for wetland management such as operation and performance monitoring of wetlands.