DOI QR코드

DOI QR Code

Biogas potential estimation for mono- and co-digestion of cow manure and waste grass

우분뇨와 폐잔디의 단독 및 병합소화 잠재량 평가

  • Ahn, Johng-Hwa (Department of Environmental Engineering, Gangwon National University) ;
  • Gillespie, Andrew (Civil Engineering Division, School of Engineering, University of Glasgow) ;
  • Shin, Seung Gu (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
  • 안종화 (강원대학교 건축토목환경공학부 환경공학전공) ;
  • 앤드류 질레스피 (글라스고대학교 공과대학 토목공학전공) ;
  • 신승구 (경남과학기술대학교 에너지공학과)
  • Received : 2019.12.10
  • Accepted : 2020.01.14
  • Published : 2020.03.30

Abstract

Biogas production potential was experimentally estimated for mono- and co-digestion of cow manure and waste grass. The two organic wastes were mixed at five different ratios (100:0, 75:25, 50:50, 25:75, 0:100) on the volatile solids basis, and were assessed using biochemical methane potential (BMP) test. Thee reaction temperatures, 25℃, 30℃ and 35℃, were applied as well, resulting in 15 different combinations for the test. The results showed that both higher temperature and waste grass mixing ratio resulted in higher methane yield and maximum methane production rate. Based on the experimental results, a theoretical farm- or community-scale (240 or 2400 ㎥) anaerobic digester was designed to evaluate the energy balance associated with mono- and co-digestion of the wastes at different temperatures. Although the energy production increased as the temperature and the waste grass mixing ratio increased, the net energy gain, energy production subtracted by energy consumption for heating and maintenance, was estimated to be the highest at 30℃, followed by at 35℃ and 25℃. Therefore, it is advised that both the experimental methane production and the detailed design parameters must be considered for the optimization of the net energy gain from these wastes.

본 연구에서는 우분뇨와 폐잔디를 이용한 혐기소화 잠재성을 단독 및 병합 조건에서 평가하였다. 두 종의 유기성 폐자원은 휘발성고형분(VS) 기준 100:0, 75:25, 50:50, 25:75, 0:100의 다섯 가지 혼합비 조건에서 회분식 BMP(biochemical methane potential) 테스트를 통해 바이오가스 생산을 측정하였다. 또한, 서로 다른 3개의 온도조건(25℃, 30℃, 35℃)을 적용하여 총 15개 실험 조건을 비교하였다. 실험 결과, 반응 온도가 높을수록, 폐잔디의 혼합비가 높을수록 더 높은 메탄 수율과 최대 메탄 생산율이 관측되었다. 실험 결과를 바탕으로 유효체적 240(농장규모) 또는 2,400(마을 규모) ㎥의 가상의 혐기소화조를 가정하여 서로 다른 조건에 따른 에너지 수지를 비교하였다. 예측된 에너지 생산량은 반응 온도가 높을수록 더 많았으나 소화조 가온 등에 따른 에너지 소모량을 고려한 에너지 순생산량은 30℃, 35℃, 25℃ 순으로 높게 예측되었다. 따라서 에너지 순생산량을 최대화하기 위한 조건 도출을 위해서는 메탄 수율 등의 실험적 측정 외에도 구체적인 소화조의 설계 인자를 고려해야 하는 것으로 평가되었다.

Keywords

References

  1. Ministry of Environment, "Animal manure generation and treatment statistics of year 2017," Ministry of Environment, pp. 1-14. (2018).
  2. Ministry of Environment, "Waste generation and treatment statistics of year 2017," Ministry of Environment, pp. 42. (2018).
  3. Hwang, S., Shin, S. G., Han, G., Shin, J., Lee, J. and Yim, M., "Facilitation of waste-to-energy projects by co-treatment of organic wastes," Korea Environment Corporation, pp. 119-122. (2017).
  4. Ministry of Environment, "Current state of the biogas production facilities using organic wastes in 2017," Ministry of Environment, pp. 1-7. (2018).
  5. Passos, F., Ortega, V. and Donoso-Bravo, A., "Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation", Bioresour. Technol., 227, pp. 239-246. (2017). https://doi.org/10.1016/j.biortech.2016.12.034
  6. Lateef, S., Beneragama, N., Yamashiro, T., Iwasaki, M. and Umetsu, K., "Batch anaerobic co-digestion of cow manure and waste milk in two-stage process for hydrogen and methane productions", Biopro. Biosyst. Eng., 37, pp. 355-363. (2014). https://doi.org/10.1007/s00449-013-1000-9
  7. Im, S., Oh, S.-E., Hong, D.-G. and Kim, D.-H., "Role and principle of lowering storage temperature : methane emission and microbial community of cattle manure", J. KORRA, 27(2), pp. 41-49. (2019).
  8. Im, S., Oh, S.-E., Hong, D.-G. and Kim, D.-H., "Acidification of pig slurry with sugar for reducing methane emission during storage", J. KORRA, 27(2), pp. 81-89. (2019).
  9. Hidaka, T., Wang, F. and Tsumori, J., "Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modeling", Waste Manage., 43, pp. 144-151. (2015). https://doi.org/10.1016/j.wasman.2015.04.026
  10. Moset, V., Bertolini, E., Cerisuelo, A., Cambra, M., Olmos, A. and Cambra-Lopez, M., "Start-up strategies for thermophilic anaerobic digestion of pig manure", Energy, 74, pp. 389-395. (2014). https://doi.org/10.1016/j.energy.2014.07.003
  11. Prapinagsorn, W., Sittijunda, S. and Reungsang, A., "Co-digestion of napier grass and its silage with cow dung for bio-hydrogen and methane production by two-stage anaerobic digestion process", Energies, 11(1), pp. 47. (2018). https://doi.org/10.3390/en11010047
  12. Bahrs, E. and Angenendt, E., "Status quo and perspectives of biogas production for energy and material utilization", GCB Bioenergy. 11, pp. 9-20. (2018). https://doi.org/10.1111/gcbb.12548
  13. Speece, R. E., "Anaerobic biotechnology for industrial wastewaters," Archae Press, pp. 94-95. (1995).
  14. Lee, J., Shin, S.G., Han, G., Koo, T. and Hwang, S., "Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: Key process parameters and microbial indicators of process instability", Bioresour. Technol., 245, pp. 689-697. (2017). https://doi.org/10.1016/j.biortech.2017.09.015
  15. McKeown, R. M., Scully, C., Mahony, T. E., Collins, G. and O'Flaherty, V., "Long-term (1243 days), low-temperature ($4-15^{\circ}C$), anaerobic biotreatment of acidified wastewaters: Bioprocess performance and physiological characteristics", Water Res., 43, pp. 1611-1620. (2009). https://doi.org/10.1016/j.watres.2009.01.015
  16. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J., Guwy, A., Kalyuzhnyi, S., Jenicek, P. and Van Lier, J., "Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays", Water Sci. Technol,. 59, pp. 927-934. (2009). https://doi.org/10.2166/wst.2009.040
  17. Ebner, J. H., Labatut, R. A., Lodge, J. S., Williamson, A. A. and Trabold, T. A., "Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects", Waste Manage., 52, pp. 286-294. (2016). https://doi.org/10.1016/j.wasman.2016.03.046
  18. APHA, "Standard methods for the examination of water and wastewater, "American Public Health Association, pp. 2-56. (2005).
  19. National Institute for Environment Research, "Technical guidelines for co-digesting biogas plants," National Institute for Environment Research, pp. 33-34. (2016).
  20. Bohn, I., Bjornsson, L. and Mattiasson, B., "The energy balance in farm scale anaerobic digestion of crop residues at $11-37^{\circ}C$", Process Biochem., 42, pp. 57-64. (2007). https://doi.org/10.1016/j.procbio.2006.07.013
  21. Xie, S., Lawlor, P. G., Frost, J. P., Hu, Z. and Zhan, X., "Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of concentrated pig manure and grass silage", Bioresour. Technol., 102, pp. 5728-5733. (2011). https://doi.org/10.1016/j.biortech.2011.03.009
  22. Tufaner, F. and Avsar, Y., "Effects of co-substrate on biogas production from cattle manure: a review", Int. J. Environ. Sci. Tech., 13, pp. 2303-2312. (2016). https://doi.org/10.1007/s13762-016-1069-1
  23. McKeown, R. M., Hughes, D., Collins, G., Mahony, T. and O'Flaherty, V., "Low-temperature anaerobic digestion for wastewater treatment", Curr. Opin. Biotech., 23, pp. 444-451. (2012). https://doi.org/10.1016/j.copbio.2011.11.025
  24. Agriculture and Food Development Authority, "Quality grass silage for dairy and beef production systems: a best practice guide," Teagasc, pp. 6. (2016).
  25. The Cattle Site, "Watch out: over a third of silage is wasted from the sward," url; https://www.thecattlesite.com/articles/4209/watch-out-over-a-third-of-silage-is-wasted-from-the-sward/, accessed date; 2019.01.13.