DOI QR코드

DOI QR Code

Combined Normalized and Offset Min-Sum Algorithm for Low-Density Parity-Check Codes

LDPC 부호의 복호를 위한 정규화와 오프셋이 조합된 최소-합 알고리즘

  • Received : 2019.07.22
  • Accepted : 2019.11.05
  • Published : 2020.01.30

Abstract

The improved belief-propagation-based algorithms, such as normalized min-sum algorithm (NMSA) or offset min-sum algorithm (OMSA), are widely used to decode LDPC(Low-Density Parity-Check) codes because they are less computationally complex and work well even at low SNR(Signal-to-Noise Ratio). However, these algorithms work well only when an appropriate normalization factor or offset value is used. A new method that uses a CMD(Check Node Message Distribution) chart and least-square method, which has been recently proposed, has advantages on computational complexity over other approaches to get optimal coefficients. Furthermore, this method can be used to derive coefficients for each iteration. In this paper, we apply this method and propose an algorithm to derive a combination of normalization factor and offset value for a combined normalized and offset min-sum algorithm to further improve the decoding of LDPC codes. Simulations on the next-generation broadcasting standards, ATSC 3.0 LDPC codes, prove that a combined normalized and offset min-sum algorithm which takes the proposed coefficients as correction coefficients shows the best BER performance among other decoding algorithms.

향상된 신뢰-전파 기반 알고리즘인 정규화 최소-합 알고리즘 혹은 오프셋 최소-합 알고리즘은 낮은 연산복잡도와 높은 복호 성능을 보여 LDPC(Low-Density Parity-Check) 부호의 복호에 널리 이용되고 있다. 그러나, 이 알고리즘들은 적절한 정규화 계수와 오프셋 계수가 이용되어야만 높은 복호 성능을 갖는다. 최근 제안된 CMD(Check Node Message Distribution) 차트와 최소자승법을 이용하여 정규화 계수를 찾는 방법은 기존의 계수 도출 방법보다 계산량이 적을 뿐 아니라 각 반복 복호마다 최적의 정규화 계수를 도출할 수 있기 때문에 복호 성능을 높일 수 있다. 본 논문에서는 이 방법을 응용하여 정규화와 오프셋이 조합된 최소-합 알고리즘의 보정 계수 조합의 도출을 위한 알고리즘을 제안하고자 한다. 차세대 방송 통신 표준인 ATSC 3.0용 LDPC 부호의 컴퓨터 모의실험은 제안한 알고리즘을 통해 도출된 보정 계수 조합을 사용하였을 때 타 복호 알고리즘보다 월등히 높은 복호 성능을 가지는 것을 보인다.

Keywords

References

  1. R. G. Gallager, Low-density parity-check codes, IEEE Transactions on Information Theory, VOL.8, pp. 21-28, 1962. https://doi.org/10.1109/TIT.1962.1057683
  2. M. P. C. Fossorier, M. Mihalijevic and H. Imai, Reduced Complexity Iterative Decoding of Low-Density Parity Check Codes Based on Belief Propagation, IEEE Transactions on Communications, VOL. 47, NO. 5, May 1999. https://doi.org/10.1109/TCOMM.1999.768773
  3. J. Chen and M. P. C. Fossorier, Near optimum universal belief propagation based decoding of low-density parity check codes, IEEE Transactions on Communications, vol. 50, no. 3, pp. 406-414, 2002. https://doi.org/10.1109/26.990903
  4. J. Chen and M. P. C. Fossorier, Density Evolution for Two Improved BP-Based Decoding Algorithms of LDPC Codes, IEEE Communications Letters, VOL. 6, NO. 5, May 2002.
  5. T. J. Richardson, M. A. Shokrollahi and R. L. Urbanke, Design of Capacity-Approaching Irregular Low-Density Parity-Check codes, IEEE Transactions on Information Theory, VOL. 47, NO. 2, February 2001
  6. T. J. Richardson and R. L. Urbanke, The Capacity of Low-Density Parity-Check Codes Under Message-Passing Decoding, IEEE Transactions on Information Theory, VOL. 47, NO. 2, February 2001.
  7. I. W. Yun, H. R. Lee and J. T. Kim, An Alternative Approach Obtaining a Normalization Factor in Normalized Min-Sum Algorithm for Low-Density Parity-Check Code, Hindawi Wireless Communications and Mobile Computing, VOL. 2018, October 2018.
  8. M. Shaghaghi, Yong Liang Guan, Kui Cai, Zhiliang Qin, Combined normalized and offset min-sum decoding over partial response channels, ICICS, Dec 2009
  9. W. E. Ryan, An introduction to LDPC codes, CRC Handbook for Coding and Signal Processing for Recording Systems, B. Vasic, Ed. Boca Raton, FL: CRC, 2004.
  10. S. Myung, S. Park, K. Kim, J. Lee, S. Kown and J. Kim. Offset and Normalized Min-Sum Algorithms for ATSC 3.0 LDPC Decoder, IEEE Trans. Broadcasting, vol. 63, no. 4, Dec 2017.