• Title/Summary/Keyword: offset min-sum

Search Result 3, Processing Time 0.017 seconds

Combined Normalized and Offset Min-Sum Algorithm for Low-Density Parity-Check Codes (LDPC 부호의 복호를 위한 정규화와 오프셋이 조합된 최소-합 알고리즘)

  • Lee, Hee-ran;Yun, In-Woo;Kim, Joon Tae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.36-47
    • /
    • 2020
  • The improved belief-propagation-based algorithms, such as normalized min-sum algorithm (NMSA) or offset min-sum algorithm (OMSA), are widely used to decode LDPC(Low-Density Parity-Check) codes because they are less computationally complex and work well even at low SNR(Signal-to-Noise Ratio). However, these algorithms work well only when an appropriate normalization factor or offset value is used. A new method that uses a CMD(Check Node Message Distribution) chart and least-square method, which has been recently proposed, has advantages on computational complexity over other approaches to get optimal coefficients. Furthermore, this method can be used to derive coefficients for each iteration. In this paper, we apply this method and propose an algorithm to derive a combination of normalization factor and offset value for a combined normalized and offset min-sum algorithm to further improve the decoding of LDPC codes. Simulations on the next-generation broadcasting standards, ATSC 3.0 LDPC codes, prove that a combined normalized and offset min-sum algorithm which takes the proposed coefficients as correction coefficients shows the best BER performance among other decoding algorithms.

Single-Step Adaptive Offset Min-Sum Algorithm for Decoding LDPC Codes (LDPC 코드의 빠른 복원을 위한 1단으로 구성된 적응적인 오프셋 MS 알고리즘)

  • Lin, Xiaoju;Baasantseren, Gansuren;Lee, Hae-Kee;Kim, Sung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.53-57
    • /
    • 2010
  • Low-density parity-check (LDPC) codes with belief-propagation (BP) algorithm achieve a remarkable performance close to the Shannon limit at reasonable decoding complexity. Conventionally, each iteration in decoding process contains two steps, the horizontal step and the vertical step. In this paper, an efficient implementation of the adaptive offset min-sum (AOMS) algorithm for decoding LDPC codes using the single-step method is proposed. Furthermore, the performances of the AOMS algorithm compared with belief-propagation (BP) algorithm are investigated. The algorithms using the single-step method reduce the implementation complexity, speed up the decoding process and have better efficiency in terms of memory requirements.

An Algorithm to Speed Up the Rapid Prototyping (쾌속조형의 속도를 향상시키기 위한 알고리즘)

  • Ko, Min-Suk;Chang, Min-Ho;Wang, Gi-Nam;Park, Sang-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.157-164
    • /
    • 2008
  • While developing physical prototype from CAD model, rapid prototyping mainly focuses on two key points reducing time and material consumption. So, we have to change from a traditional solid model to building a hollowed prototype. In this paper, a new method is presented to hollow out solid objects with uniform wall thickness to increase RP efficiency. To achieve uniform wall thickness, it is necessary to generate internal contour by slicing the offset model of an STL model. Due to many difficulties in this method, this paper proposes a new algorithm that computes internal contours computing offset model which is generated from external contour using wall thickness. Proposed method can easily compute the internal contour by slicing the offset surface defined by the sum of circle swept volumes of external contours without actual offset and the circle wept volumes. Internal contour existences are confirmed by using the external point. Presented algorithm uses the 2D geometric algorithm allowing RP implementation more efficient. Various examples have been tested with implementation of the algorithm, and some examples are presented for illustration.