DOI QR코드

DOI QR Code

Rheological Behavior of Polylactic Acid Solution and Physical Properties of Resulting Film Using Cellulose Nanocrystals

Cellulose Nanocrystal 도입에 따른 Polylactic Acid 용액의 유변학적 거동 관찰 및 필름의 물성 향상 연구

  • Kim, Taeho (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Ko, Eunjoo (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Ahn, Jungbin (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Park, Sanghyun (Division of Chemical Engineering, Konkuk University) ;
  • Pak, Sewon (Division of Chemical Engineering, Konkuk University) ;
  • Kim, Minhyung (Division of Chemical Engineering, Konkuk University) ;
  • Kim, Hyungsup (Department of Organic and Nano System Engineering, Konkuk University)
  • 김태호 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 고은주 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 안정빈 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 박상현 (건국대학교 공과대학 화학공학부) ;
  • 박세원 (건국대학교 공과대학 화학공학부) ;
  • 김민형 (건국대학교 공과대학 화학공학부) ;
  • 김형섭 (건국대학교 공과대학 유기나노시스템공학과)
  • Received : 2020.11.16
  • Accepted : 2020.12.18
  • Published : 2020.12.31

Abstract

Polylactic acid (PLA), a polymer synthesized from biomass, is biodegradable and sustainable. PLA has limited applications, owing to its poor mechanical properties. In this study, cellulose nanocrystals (CNCs) were introduced into a PLA solution to improve the mechanical properties of the composite film without sacrificing biodegradability. The dispersion of CNCs was investigated based on the rheological behavior of the solution. The uniform dispersion of CNCs decreased the solution viscosity and enhanced the mechanical performance of the resulting film. When the CNC content was 2 wt%, the thermal decomposition onset temperature of the film improved.

Keywords

Acknowledgement

이 논문은 2020학년도 건국대학교의 연구년 교원 지원에 의하여 연구되었음. 이 논문은 2018년도 정부(과학기술정보통신부)의 재원으로 한국연구재단-미래선도기술개발사업의 지원을 받아 수행된 연구임(No. 2018M3C1B9069748).

References

  1. F. Gironi and V. Piemonte, "Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2011, 33, 1949-1959. https://doi.org/10.1080/15567030903436830
  2. W. C. Li, H. Tse, and L. Fok, "Plastic Waste in the Marine Environment: A Review of Sources, Occurrence and Effects", Sci. Total Environ., 2016, 566, 333-349. https://doi.org/10.1016/j.scitotenv.2016.05.084
  3. C. Freeman, M. A. Young, and J. Fuller, "The Plastics Industry: A Comparative Study of Research and Innovation", Nat. Inst. Economic Rev., 1963, 26, 22-62. https://doi.org/10.1177/002795016302600103
  4. Z. Kuruppalil, "Green Plastics: An Emerging Alternative for Petroleum-based Plastics", Int. J. Eng. Res. Innov., 2011, 3, 59-64.
  5. R. L. Reddy, V. S. Reddy, and G. A. Gupta, "Study of Bio-plastics as Green and Sustainable Alternative to Plastics", Int. J. Emerg. Technol. Adv. Eng., 2013, 3, 76-81.
  6. C. R. Alvarez-Chavez, S. Edwards, R. Moure-Eraso, and K. Geiser, "Sustainability of Bio-based Plastics: General Comparative Analysis and Recommendations for Improvement", J. Clean. Prod., 2012, 23, 47-56. https://doi.org/10.1016/j.jclepro.2011.10.003
  7. R. K. Kulkarni, E. Moore, A. Hegyeli, and F. Leonard, "Biodegradable Poly(lactic acid) Polymers", J. Biomed. Mater. Res., 1971, 5, 169-181.
  8. D. Garlotta, "A Literature Review of Poly(lactic acid)", J. Polym. Environ., 2001, 9, 63-84. https://doi.org/10.1023/A:1020200822435
  9. R. E. Drumright, P. R. Gruber, and D. E. Henton, "Polylactic Acid Technology", Adv. Mater., 2000, 12, 1841-1846. https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  10. Q. Chen, J. D. Mangadlao, J. Wallat, A. De Leon, J. K. Pokorski, and R. C. Advincula, "3D Printing Biocompatible Polyurethane/poly(lactic acid)/graphene Oxide Nanocomposites: Anisotropic Properties", ACS Appl. Mater. Interfaces, 2017, 9, 4015-4023. https://doi.org/10.1021/acsami.6b11793
  11. C. Dichtl, P. Sippel, and S. Krohns, "Dielectric Properties of 3D Printed Polylactic Acid", Adv. Mater. Sci. Eng., 2017, 2017, 1-10.
  12. N. Li, Y. Li, and S. Liu, "Rapid Prototyping of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing", J. Mater. Proc. Technol., 2016, 238, 218-225. https://doi.org/10.1016/j.jmatprotec.2016.07.025
  13. C. Zengwen, H. Pan, J. Bian, L. Han, H. Zhang, L. Dong, and Y. Yang, "Transform Poly(lactic acid) Packaging Film from Brittleness to Toughness Using Traditional Industrial Equipments", Polymer, 2019, 180, 121728. https://doi.org/10.1016/j.polymer.2019.121728
  14. M. Razavi and S.-Q. Wang, "Why is Crystalline Poly(lactic acid) Brittle At Room Temperature?", Macromolecules, 2019, 52, 5429-5441. https://doi.org/10.1021/acs.macromol.9b00595
  15. Y. Yu, P. Xu, S. Jia, H. Pan, H. Zhang, D. Wang, and L. Dong, "Exploring Polylactide/poly(butylene adipate-co-terephthalate)/rare Earth Complexes Biodegradable Light Conversion Agricultural Films", Int. J. Biol. Macromol., 2019, 127, 210-221. https://doi.org/10.1016/j.ijbiomac.2019.01.044
  16. X. Li, X. Ai, H. Pan, J. Yang, G. Gao, H. Zhang, H. Yang, and L. Dong, "The Morphological, Mechanical, Rheological, and Thermal Properties of PLA/PBAT Blown Films with Chain Extender", Polym. Adv. Technol., 2018, 29, 1706-1717. https://doi.org/10.1002/pat.4274
  17. K. Prashantha, B. Lecouvet, M. Sclavons, M. F. Lacrampe, and P. Krawczak, "Poly(lactic acid)/halloysite Nanotubes Nanocomposites: Structure, Thermal, and Mechanical Properties as a Function of Halloysite Treatment", J. Appl. Polym. Sci., 2013, 128, 1895-1903. https://doi.org/10.1002/app.38358
  18. Y. Dong, J. Marshall, H. J. Haroosh, S. Mohammadzadehmoghadam, D. Liu, X. Qi, and K.-T. Lau, "Polylactic Acid (PLA)/Halloysite Nanotube (HNT) Composite Mats: Influence of HNT Content and Modification", Compos. Part A: Appl. Sci. Manuf., 2015, 76, 28-36. https://doi.org/10.1016/j.compositesa.2015.05.011
  19. J. Zhao, X. Li, H. Pan, X. Ai, H. Yang, H. Zhang, G. Gao, and L. Dong, "Rheological, Thermal and Mechanical Properties of Biodegradable Poly(lactic acid)/poly(butylene adipate-co-terephthalate)/poly(propylene carbonate) Polyurethane Trinary Blown Films", Polym. Bull., 2020, 77, 4235-4258. https://doi.org/10.1007/s00289-019-02942-5
  20. L. Bokobza, M. Rahmani, C. Belin, J. L. Bruneel, and N. E. El Bounia, "Blends of Carbon Blacks and Multiwall Carbon Nanotubes as Reinforcing Fillers for Hydrocarbon Rubbers", J. Polym. Sci. Part B: Polym. Phys., 2008, 46, 1939-1951. https://doi.org/10.1002/polb.21529
  21. G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, "A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites", J. Ind. Eng. Chem., 2015, 21, 11-25. https://doi.org/10.1016/j.jiec.2014.03.022
  22. J. Muller, F. Huaux, N. Moreau, P. Misson, J.-F. Heilier, M. Delos, M. Arras, A. Fonseca, J. B. Nagy, and D. Lison, "Respiratory Toxicity of Multi-wall Carbon Nanotubes", Toxicol. Appl. Pharm., 2005, 207, 221-231. https://doi.org/10.1016/j.taap.2005.01.008
  23. M. Hasani, E. D. Cranston, G. Westman, and D. G. Gray, "Cationic Surface Functionalization of Cellulose Nanocrystals", Soft. Matter., 2008, 4, 2238-2244. https://doi.org/10.1039/b806789a
  24. Y. Abibi, L. A. Lucia, and O. J. Rojas, "Cellulose Nanocrystals: Chemistry, Self-assembly, and Applications", Chem. Rev., 2010, 110, 3479-3500. https://doi.org/10.1021/cr900339w
  25. D. Trache, M. H. Hussin, M. M. Haafiz, and V. K. Thakur, "Recent Progress in Cellulose Nanocrystals: Sources and Production", Nanoscale, 2017, 9, 1763-1786. https://doi.org/10.1039/c6nr09494e
  26. M.-C. Li, Q. Wu, K. Song, C. F. De Hoop, S. Lee, Y. Qing, and Y. Wu, "Cellulose Nanocrystals and Polyanionic Cellulose as Additives in Bentonite Water-based Drilling Fluids: Rheological Modeling and Filtration Mechanisms", Ind. Eng. Chem. Res., 2016, 55, 133-143. https://doi.org/10.1021/acs.iecr.5b03510
  27. Y. Mo, R. Guo, J. Liu, Y. Lan, Y. Zhang, W. Xue, and Y. Zhang, "Preparation and Properties of PLGA Nanofiber Membranes Reinforced with Cellulose Nanocrystals", Colloids and Surfaces B: Biointerfaces, 2015, 132, 177-184. https://doi.org/10.1016/j.colsurfb.2015.05.029
  28. Y. Huang, H. Zhan, D. Li, H. Tian, and C. Chang, "Tunicate Cellulose Nanocrystals Modified Commercial Filter Paper for Efficient Oil/water Separation", J. Membr. Sci., 2019, 591, 117362. https://doi.org/10.1016/j.memsci.2019.117362
  29. J.-W. Lee, T. Yu, C.-W. Park, and Y.-H. Kim, "Interfacial and Bending Properties by Adding HNTs on the Aramid/Basalt Reinforced Epoxy-Based Hybrid Composites", Preprints, 2017, 2017050118.
  30. R. Salehiyan and K. Hyun, "Effect of Organoclay on Non-linear Rheological Properties of Poly(lactic acid)/poly (caprolactone) Blends", Korean J. Chem. Eng., 2013, 30, 1013-1022. https://doi.org/10.1007/s11814-013-0035-6
  31. Y. Kim, Y. Song, and H. Kim, "Preparation of Transparent Cellulose Film with Controlled Haze Using Halloysite Nanotubes", Cellulose, 2018, 25, 1239-1248. https://doi.org/10.1007/s10570-017-1625-y
  32. N. Bleach, S. Nazhat, K. Tanner, M. Kellomaki, and P. Tormala, "Effect of Filler Content on Mechanical and Dynamic Mechanical Properties of Particulate Biphasic Calcium Phosphate-polylactide Composites", Biomaterials, 2002, 23, 1579-1585. https://doi.org/10.1016/S0142-9612(01)00283-6
  33. K.-H. Kim, J. L. Ong, and O. Okuno, "The Effect of Filler Loading and Morphology on the Mechanical Properties of Contemporary Composites", J. Prosthetic Dent., 2002, 87, 642-649. https://doi.org/10.1067/mpr.2002.125179
  34. L. Broers, S. van Dongen, V. de Goederen, M. Ton, J. Spaen, C. Boeriu, and K. Schroen, "Addition of Chitin Nanoparticles Improves Polylactic Acid Film Properties", Nanotechnol. Adv. Mater. Sci., 2018, 1, 1-8.