DOI QR코드

DOI QR Code

계면중합법을 이용한 폴리아마이드 610/탄소섬유/탄소나노튜브 복합재 제조 및 물성 평가

Processing and Characterization of Polyamide 610/Carbon Fiber/Carbon Nanotube Composites through In-Situ Interfacial Polymerization

  • 투고 : 2020.10.26
  • 심사 : 2020.12.28
  • 발행 : 2020.12.31

초록

탄소섬유강화 플라스틱(CFRP)의 계면 특성은 복합재료의 전체적인 기계적 특성을 제어하므로 매우 중요하다. 이에 따라, 탄소나노튜브(CNT)로 탄소섬유(CF) 표면을 개질하는 것이 계면을 강화하기 위해 활발히 연구되고 있다. 그러나 대부분의 표면 개질 방법은 자체적으로 한계가 있다. 예를 들어, CVD 성장에서 탄소섬유의 CNT를 성장시키기 위해 600~1000℃ 범위의 고온을 적용해야 하며, 이는 탄소섬유 자체에 손상을 줄 수 있으므로 물성이 저하될 수 있다. 한편, 본 연구에서는, 폴리아마이드(PA) 610/CF/CNT 복합재가 PA610의 계면중합을 통해 제조되었으며, 유기계와 수계 사이의 계면에서 PA610/CNT 중합이 일어난다. 탄소섬유는 CNT가 균일하게 분산된 PA610으로 코팅되었다. 복합재 내에서의 CNT 분산상태는 주사전자현미경으로 관찰되었으며, 열중량 분석을 통해 복합재의 열안정성을 분석하였다. 그리고 섬유 뽑힘 시험을 통해 섬유와 기지 간의 계면 결합력을 측정하였다.

The interfacial properties in carbon fiber composites, which control the overall mechanical properties of the composites, are very important. Effective interface enhancement work is conducted on the modification of the carbon fiber surface with carbon nanotubes (CNTs). Nonetheless, most surface modifications methods do have their own drawbacks such as high temperatures with a range of 600~1000℃, which should be implemented for CNT growth on carbon fibers that can cause carbon fiber damages affecting deterioration of composites properties. This study includes the use of in-situ interfacial polymerization of polyamide 610/CNT to fabricate the carbon fiber composites. The process is very fast and continuous and can disperse CNTs with random orientation in the interface resulting in enhanced interfacial properties. Scanning electron microscopy was conducted to investigate the CNT dispersion and composites morphology, and the thermal stability of the composites was analyzed via thermogravimetric analysis. In addition, fiber pull-out tests were used to assess interfacial strength between fiber and matrix.

키워드

참고문헌

  1. Zakaria, M.R., Akil, H.M., Abdul Kudus, M.H., Ullah F., Javed, F., and Nosbi, N., "Hybrid Carbon Fiber-carbon Nanotubes Reinforced Polymer Composites: A Review," Composites Part B, Vol. 176, 2019, pp. 107313. https://doi.org/10.1016/j.compositesb.2019.107313
  2. Lee, S.B., Choi, O., Lee, W., Yi, J.W., Kim, B.S., Byun, J.H., Yoon, M.K., Fong, H., Thostenson, E.T., and Chou, T.W., "Processing and Characterization of Multi-scale Hybrid Composites Reinforced with Nanoscale Carbon Reinforcements and Carbon Fibers," Composites Part A, Vol. 42, No. 4, 2011, pp. 337-344. https://doi.org/10.1016/j.compositesa.2010.10.016
  3. Mujika F., Vargas, G., Ibarretxe, J., Garcia, J.D., and Arrese, A., "Influence of the Modification with MWCNT on the Interlaminar Fracture Properties of Long Carbon Fiber Composites," Composites Part B, Vol. 43, No. 3, 2012, pp. 1336-1340. https://doi.org/10.1016/j.compositesb.2011.11.020
  4. Diez-Pascual, A.M., Naffakh, M., Marco, C., Gomez-Fatou, M.A., and Ellis, G.J., "Multiscale Fiber-reinforced Thermoplastic Composites Incorporating Carbon Nanotubes: A Review," Current Opinion in Solid State and Materials Science, Vol. 18, No. 2, 2014, pp. 62-80. https://doi.org/10.1016/j.cossms.2013.06.003
  5. Song, Q., Li, K.-Z., Li, H.-L., Li, H.-J., and Ren, C., "Grafting Straight Carbon Nanotubes Radially onto Carbon Fibers and Their Effect on the Mechanical Properties of Carbon/carbon Composites," Carbon, Vol. 50, No. 10, 2012, pp. 3949-3952. https://doi.org/10.1016/j.carbon.2012.03.023
  6. Sharma, M., Gao, S., Mader, E., Sharma, H., Wei, L.Y., and Bijwe, J., "Carbon Fiber Surfaces and Composite Interphases," Composites Science and Technology, Vol. 102, 2014, pp. 35-50. https://doi.org/10.1016/j.compscitech.2014.07.005
  7. Karger-Kocsis, J., Mahmood, H., and Pegoretti, A., "Recent Advances in Fiber/matrix Interphase Engineering for Polymer Composites," Progress in Materials Science, Vol. 73, 2015, pp. 1-43. https://doi.org/10.1016/j.pmatsci.2015.02.003