• Title/Summary/Keyword: 멀티스케일 하이브리드 복합재

Search Result 2, Processing Time 0.017 seconds

Design and Manufacturing of Multiscale Hybrid Composites for Electromagnetic Interference Shielding (전자파차폐용 멀티스케일 하이브리드 복합재의 설계 및 제조)

  • Ngouanom, Joel Renaud Gnidakouong;Kim, Myung-Soo;Park, Hyung-Wook;Park, Young-Bin;Jung, Young-Bok;Jeong, Ho-Soon
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.25-30
    • /
    • 2011
  • This paper presents an experimental study on the enhancement of electromagnetic shielding (EMI) properties of glass fiber, carbon fiber, and glass-carbon fiber composites by adding layers of multi-walled carbon nanotubes (MWCNTs). In the case of glass-fiber composites, spraying 0.1~0.2 g of MWCNT over a fiber area of $200mm{\times}200mm$ (1.8~3.6 ${\mu}m$ in thickness) resulted in significant improvement in EMI shielding effectiveness (SE). Also, when applying multiple MWCNT layers, it was more effective to place the layers concentrated near the center of the composite rather than spreading them out. On the contrary, inherently conductive carbon fiber and glass-carbon fiber composites did not show appreciable improvement with the addition of MWCNT layers. In order to maximize the effectiveness of carbon nanomaterials as EMI shielding fillers, it is imperative to understand the effect of these materials on various EMI shielding mechanisms and their interactions.

Processing and Characterization of Polyamide 610/Carbon Fiber/Carbon Nanotube Composites through In-Situ Interfacial Polymerization (계면중합법을 이용한 폴리아마이드 610/탄소섬유/탄소나노튜브 복합재 제조 및 물성 평가)

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.415-420
    • /
    • 2020
  • The interfacial properties in carbon fiber composites, which control the overall mechanical properties of the composites, are very important. Effective interface enhancement work is conducted on the modification of the carbon fiber surface with carbon nanotubes (CNTs). Nonetheless, most surface modifications methods do have their own drawbacks such as high temperatures with a range of 600~1000℃, which should be implemented for CNT growth on carbon fibers that can cause carbon fiber damages affecting deterioration of composites properties. This study includes the use of in-situ interfacial polymerization of polyamide 610/CNT to fabricate the carbon fiber composites. The process is very fast and continuous and can disperse CNTs with random orientation in the interface resulting in enhanced interfacial properties. Scanning electron microscopy was conducted to investigate the CNT dispersion and composites morphology, and the thermal stability of the composites was analyzed via thermogravimetric analysis. In addition, fiber pull-out tests were used to assess interfacial strength between fiber and matrix.